scholarly journals Appearance and Maturation of T-Cell Subsets During Rat Thymus Ontogeny

1998 ◽  
Vol 5 (4) ◽  
pp. 319-331 ◽  
Author(s):  
A. Vicente ◽  
A. Varas ◽  
R.S Acedón ◽  
E. Jiminez ◽  
J. J. Mulqoz ◽  
...  

In previous papers, we have described the ontogenetical development of thymic stromal-cell components (epithelium, macrophages, dendritic cells) of Wistar rats. Here, we correlate those results with the maturation of rat T-cell precursors along the fetal and postnatal life. First T-cell precursors, which colonize the thymus anlage around days 13-14 of gestation, largely express CD45, CD43, CD53, and Thy 1 cell markers, and in a lesser proportion the OX22 antigen. Rat CD3-CD4-CD8-thymocytes present in the earliest stages of gestation could be subdivided in three major cell subpopulations according to the CD44 and CD25 expression: CD44-/+CD25-→ CD44+CD25+→ CD44+CD25-On fetal days 17-18, a certain proportion of CD4-CD8-cells weakly,express the TcRβchain, in correlation with the appearance of the first immature CD4-CD8+thymocytes. This cell subpopulation, in progress to the CD4+CD8+stage, upregulates CD8αbefore the CD8βchain, expresses the CD53 antigen, and exhibits a high proliferative rate. First mature thymocytes arising from the DP (CD4+CD8+) cells appear on fetal days 20-21. Then, the CD4+:CD8+cell ratio is ≤1 changing to adult values (2-3) just after birth. Also, the percentage of VβTcR repertoire covered in adult thymus is reached during the postnatal period, being lower during the fetal life. Finally, in correlation with the beginning of thymocyte emigration to the periphery a new wave of T-cell maturation apparently occurs in the perinatal rat thymus.

2000 ◽  
Vol 7 (6) ◽  
pp. 953-959 ◽  
Author(s):  
Zhong Chen Kou ◽  
Joshua S. Puhr ◽  
Mabel Rojas ◽  
Wayne T. McCormack ◽  
Maureen M. Goodenow ◽  
...  

ABSTRACT The T-cell receptor (TCR) CDR3 length heterogeneity is formed during recombination of individual Vβ gene families. We hypothesized that CDR3 length diversity could be used to assess the fundamental differences within the TCR repertoire of CD45RA and CD45RO T-cell subpopulations. By using PCR-based spectratyping, nested primers for all 24 human Vβ families were developed to amplify CDR3 lengths in immunomagnetically selected CD45RA and CD45RO subsets within both CD4+ and CD8+ T-cell populations. Umbilical cord blood mononuclear cells or peripheral blood mononuclear cells obtained from healthy newborns, infants, and children, as well as human immunodeficiency virus (HIV)-infected children, were analyzed. All T-cell subsets from newborn and healthy children demonstrated a Gaussian distribution of CDR3 lengths in separated T-cell subsets. In contrast, HIV-infected children had a high proportion of predominant CDR3 lengths within both CD45RA and CD45RO T-cell subpopulations, most commonly in CD8+ CD45RO T cells. Sharp differences in clonal dominance and size distributions were observed when cells were separated into CD45RA or CD45RO subpopulations. These differences were not apparent in unfractionated CD4+ or CD8+ T cells from HIV-infected subjects. Sequence analysis of predominant CDR3 lengths revealed oligoclonal expansion within individual Vβ families. Analysis of the CDR3 length diversity within CD45RA and CD45RO T cells provides a more accurate measure of disturbances in the TCR repertoire than analysis of unfractionated CD4 and CD8 T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pavel V. Shelyakin ◽  
Ksenia R. Lupyr ◽  
Evgeny S. Egorov ◽  
Ilya A. Kofiadi ◽  
Dmitriy B. Staroverov ◽  
...  

The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.


2013 ◽  
Vol 11 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Koshiro Nishikuni ◽  
Guilherme Carvalhal Ribas

Object The surface of the developing fetal brain undergoes significant morphological changes during fetal growth. The purpose of this study was to evaluate the morphological development of the brain sulci from the fetal to the early postnatal period. Methods Two hundred fourteen brain hemispheres from 107 human brain specimens were examined to evaluate the timing of sulcal formation, from its appearance to its complete development. These brains were obtained from cadavers ranging in age from 12 weeks of gestation to 8 months of postnatal life. Results The order of appearance of the cerebral sulci, and the number and percentages of specimens found in this study were as follows: longitudinal cerebral fissure at 12 weeks (10/10, 100%); callosal sulcus at 12 weeks (10/10, 100%); hippocampal sulcus at 15 weeks (7/10, 70%); lateral sulcus at 17 weeks (20/22, 90.9%); circular insular sulcus at 17 weeks (18/22, 81.8%); olfactory sulcus at 17 weeks (18/22, 81.8%); calcarine sulcus at 17 weeks (14/22, 63.6%); parietooccipital sulcus at 17 weeks (11/22, 50%); cingulate sulcus at 19 weeks (16/20, 80%); central sulcus at 21 weeks (22/38, 57.9%); orbital sulcus at 22 weeks (9/16, 56.2%); lunate sulcus at 24 ± 2 weeks (12/16, 75%); collateral sulcus at 24 ± 2 weeks (8/16, 50%); superior frontal sulcus at 25 ± 2 weeks (5/6, 83.3%); rhinal sulcus at 25 ± 2 weeks (3/6, 50%); precentral sulcus at 26 ± 3 weeks (2/4, 50%); postcentral sulcus at 26 ± 3 weeks (2/4, 50%); superior temporal sulcus at 26 ± 3 weeks (2/4, 50%); central insular sulcus at 29 ± 2 weeks (4/4, 100%); intraparietal sulcus at 29 ± 2 weeks (2/4, 50%); paraolfactory sulcus at 29 ± 2 weeks (2/4, 50%); inferior frontal sulcus at 30 ± 3 weeks (2/4, 50%); transverse occipital sulcus at 30 ± 3 weeks (2/4, 50%); occipitotemporal sulcus at 30 ± 3 weeks (2/4, 50%); marginal branch of the cingulate sulcus at 30 ± 3 weeks (2/4, 50%); paracentral sulcus at 30 ± 3 weeks (2/4, 50%); subparietal sulcus at 30 ± 3 weeks (2/4, 50%); inferior temporal sulcus at 31 ± 3 weeks (3/6, 50%); transverse temporal sulcus at 33 ± 3 weeks (6/8, 75%); and secondary sulcus at 38 ± 3 weeks (2/4, 50%). Conclusions The brain is subjected to considerable morphological changes throughout gestation. During fetal brain development the cortex begins to fold in, thereby increasing the cortical surface. All primary sulci are formed during fetal life. The appearance of each sulcus follows a characteristic timing pattern, which may be used as one of the reliable guides pertinent to gestational age and normal fetal development.


1976 ◽  
Vol 144 (3) ◽  
pp. 685-698 ◽  
Author(s):  
K Okumura ◽  
L A Herzenberg ◽  
D B Murphy ◽  
H O McDevitt ◽  
L A Herzenberg

Data presented here show that locidentify in the I-region of the H-2 gene complex are selectively expressed in different functional T-cell subpopulations. These loci are closely linked (or possibly identical) to loci that control immune responses. They control surface determinants which identify helper and suppressor T lymphocytes. Determinants described here on allotype suppressor T cells (Ts) are found on normal (nonsuppressed) lymphoid cells, but are not found on helper T cells (Th). These determinants are controlled by a locus mapping in the I region of the H-2 complex. In an accompanying publication we show that this locus (Ia-4) marks a new I subregion (I-J) and is expressed only on T cells. Thus Ia-4 determinants idenfity a T-cell subpopulation which includes Ts but not Th. Th also carry identifying surface determinants controlled by loci that map to the H-2 complex, probably within the I region. These determinants are not found on Ts. Data presented also establish that loci in the I region control determinants on Th, but do not conclusively demonstrate that these are the determinants that distinguish Th from Ts. The selective expression of H-2-controlled determinants on Ts and Th suggests that these determinants are directly involved in immunoregulation.


Blood ◽  
2002 ◽  
Vol 100 (5) ◽  
pp. 1915-1918 ◽  
Author(s):  
Matthias Eyrich ◽  
Tanja Croner ◽  
Christine Leiler ◽  
Peter Lang ◽  
Peter Bader ◽  
...  

Normalization of restricted T-cell–receptor (TCR) repertoire is critical following T-cell–depleted (TCD) stem cell transplantation. We present a prospective study analyzing respective contributions of naive and memory T-cell subsets within the CD4+ and CD8+ compartments to the evolution of overall TCR-repertoire complexity following transplantation of CD34-selected peripheral blood progenitor cells from unrelated donors. During the first year after transplantation, sorted CD4/45RA, CD4/45R0, CD8/45RA, and CD8/45R0 subsets were analyzed at 3-month intervals for TCR-repertoire complexity by CDR3 size spectratyping. Skew in TCR-repertoire was observed only in early memory-type T cells. CD4+ and CD8+ subsets differed in clonal distribution of CDR3 sizes, with rapid Gaussian normalization of bands in CD4/45R0+ T cells. Naive T cells displayed normal repertoire complexity and contributed significantly to skew correction. Our data provide direct evidence for an important role of de novo maturation of naive T cells in normalization of an initially restricted TCR-repertoire following transplantation of CD34-selected, TCD-depleted peripheral blood progenitors from unrelated donors.


1981 ◽  
Vol 153 (2) ◽  
pp. 310-323 ◽  
Author(s):  
JA Ledbetter ◽  
RL Evans ◽  
M Lipinski ◽  
C Cummingham-Rundles ◽  
RA Good ◽  
...  

We describe the biochemical properties and cell surface distributions of three human T cell antigens (Leu-1, Leu-2a, and Leu-2b) which we postulate to be the homologues of the Lyt-1, Lyt-2, and Lyt-3 antigens that distinguish functional T cell subsets in the mouse. Leu-l, like Lyt-1, is on all thymocytes and peripheral T cells and is present in greater amounts on the helper/inducer subset than on the cytotoxic/suppressor subset. Both antigens increase in parallel fashion during T cell maturation in the thymus and each antigen is carried on a single 67,000-molecular weight (relative) (M(r)) polypeptide chain. Surprisingly, Leu-1 and Lyt-1 each are also expressed in readily detectable amounts on some B celI Ieukemias but not detectably so on normal B cells. Leu-2a and Leu-2b are antigens found only on suppressor/cytotoxic cells in the human and are very similar to the murine Lyt-2 and Lyt-3 antigens. In both species, the two antigens are on the same disulfide- linked multimeric molecules. Disulfide-bond reduction in both species yields subunits of similar size and charge. Lyt-3 and Leu-2b are extremely sensitive to trypsin digestion on viable cells whereas Lyt-2 and Leu-2a are much less so. A different membrane antigen, Leu-3, is an exclusive marker of the helper/inducer subset in man. No mouse homologue for this 55,000-M(r) protein is known. The maintenance of the homologous molecules on functionally distinct T cell subpopulations in two evolutionarily distant species suggests that the Lyt and Leu antigens perform essential functions for the cells on which they are found.


2021 ◽  
Author(s):  
Xuefei Wang ◽  
Xiangru Shen ◽  
Shan Chen ◽  
Hongyi Liu ◽  
Ni Hong ◽  
...  

AbstractClassic T cell subsets are defined by a small set of cell surface markers, while single cell RNA sequencing (scRNA-seq) clusters cells using genome-wide gene expression profiles. The relationship between scRNA-seq Clustered-Populations (scCPops) and cell surface marker-defined classic T cell subsets remain unclear. Here, we interrogated 6 bead-enriched T cell subsets with 62,235 single cell transcriptomes and re-grouped them into 9 scCPops. Bead-enriched CD4 Naïve and CD8 Naïve were mainly clustered into their scCPop counterparts, while cells from the other T cell subsets were assigned to multiple scCPops including mucosal-associated invariant T cells and natural killer T cells. The multiple T cell subsets that form a single scCPop exhibited similar expression pattern, but not vice versa, indicating scCPops are much homogeneous cell populations with similar cell states. Interestingly, we discovered and named IFNhi T, a new T cell subpopulation that highly expressed Interferon Signaling Associated Genes (ISAGs). We further enriched IFNhi T by FACS sorting of BST2 for scRNA-seq analyses. IFNhi T cluster disappeared on tSNE plot after removing ISAGs, while IFNhi T cluster showed up by tSNE analyses of ISAGs alone, indicating ISAGs are the major contributor of IFNhi T cluster. BST2+ T cells and BST2− T cells showing different efficiencies of T cell activation indicates high level of ISAGs may contribute to quick immune responses.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 880 ◽  
Author(s):  
Norwin Kubick ◽  
Patrick C. Henckell Flournoy ◽  
Ana-Maria Enciu ◽  
Gina Manda ◽  
Michel-Edwar Mickael

The effect of Alzheimer’s disease (AD) medications on CD4+ T cells homing has not been thoroughly investigated. CD4+ T cells could both exacerbate and reduce AD symptoms based on their infiltrating subpopulations. Proinflammatory subpopulations such as Th1 and Th17 constitute a major source of proinflammatory cytokines that reduce endothelial integrity and stimulate astrocytes, resulting in the production of amyloid β. Anti-inflammatory subpopulations such as Th2 and Tregs reduce inflammation and regulate the function of Th1 and Th17. Recently, pathogenic Th17 has been shown to have a superior infiltrating capacity compared to other major CD4+ T cell subpopulations. Alzheimer’s drugs such as donepezil (Aricept), rivastigmine (Exelon), galantamine (Razadyne), and memantine (Namenda) are known to play an important part in regulating the mechanisms of the neurotransmitters. However, little is known about the effect of these drugs on CD4+ T cell subpopulations’ infiltration of the brain during AD. In this review, we focus on understanding the influence of AD drugs on CD4+ T cell subpopulation interactions with the BBB in AD. While current AD therapies improve endothelial integrity and reduce astrocytes activations, they vary according to their influence on various CD4+ T cell subpopulations. Donepezil reduces the numbers of Th1 but not Th2, Rivastigmine inhibits Th1 and Th17 but not Th2, and memantine reduces Th1 but not Treg. However, none of the current AD drugs is specifically designed to target the dysregulated balance in the Th17/Treg axis. Future drug design approaches should specifically consider inhibiting CD4+ Th17 to improve AD prognosis.


2021 ◽  
Author(s):  
Lilian de O Coser ◽  
Lívia M Genaro ◽  
Amauri S Justo-Junior ◽  
Plínio Trabasso ◽  
Ricardo M Pereira ◽  
...  

Aim: We aimed to verify the frequency of CD8+ T cell subsets in patients with acute form and chronic form of paracoccidioidomycosis. Material & Methods: Mononuclear cells from paracoccidioidomycosis patients and healthy donors were isolated and phenotyped by flow cytometry. Dendritic cells were pulsed with Paracoccidioides brasiliensis yeast and co-cultures with lymphocytes. Cytokine production was measured by ELISA. Results: Acute form patients present a higher frequency of Tc1 and Tc10 cells, while chronic form patients have more Tc1 and Tc21 cells, compared with healthy controls. In vitro assays showed that P. brasiliensis induced polarization to the Tc17/Tc22 subsets. Conclusion: Our results suggest that CD8+ T cells can respond in a similar way to P. brasiliensis infection, regardless of the clinical presentation of the disease.


Sign in / Sign up

Export Citation Format

Share Document