scholarly journals Drugs Modulating CD4+ T Cells Blood–Brain Barrier Interaction in Alzheimer’s Disease

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 880 ◽  
Author(s):  
Norwin Kubick ◽  
Patrick C. Henckell Flournoy ◽  
Ana-Maria Enciu ◽  
Gina Manda ◽  
Michel-Edwar Mickael

The effect of Alzheimer’s disease (AD) medications on CD4+ T cells homing has not been thoroughly investigated. CD4+ T cells could both exacerbate and reduce AD symptoms based on their infiltrating subpopulations. Proinflammatory subpopulations such as Th1 and Th17 constitute a major source of proinflammatory cytokines that reduce endothelial integrity and stimulate astrocytes, resulting in the production of amyloid β. Anti-inflammatory subpopulations such as Th2 and Tregs reduce inflammation and regulate the function of Th1 and Th17. Recently, pathogenic Th17 has been shown to have a superior infiltrating capacity compared to other major CD4+ T cell subpopulations. Alzheimer’s drugs such as donepezil (Aricept), rivastigmine (Exelon), galantamine (Razadyne), and memantine (Namenda) are known to play an important part in regulating the mechanisms of the neurotransmitters. However, little is known about the effect of these drugs on CD4+ T cell subpopulations’ infiltration of the brain during AD. In this review, we focus on understanding the influence of AD drugs on CD4+ T cell subpopulation interactions with the BBB in AD. While current AD therapies improve endothelial integrity and reduce astrocytes activations, they vary according to their influence on various CD4+ T cell subpopulations. Donepezil reduces the numbers of Th1 but not Th2, Rivastigmine inhibits Th1 and Th17 but not Th2, and memantine reduces Th1 but not Treg. However, none of the current AD drugs is specifically designed to target the dysregulated balance in the Th17/Treg axis. Future drug design approaches should specifically consider inhibiting CD4+ Th17 to improve AD prognosis.

1976 ◽  
Vol 144 (3) ◽  
pp. 685-698 ◽  
Author(s):  
K Okumura ◽  
L A Herzenberg ◽  
D B Murphy ◽  
H O McDevitt ◽  
L A Herzenberg

Data presented here show that locidentify in the I-region of the H-2 gene complex are selectively expressed in different functional T-cell subpopulations. These loci are closely linked (or possibly identical) to loci that control immune responses. They control surface determinants which identify helper and suppressor T lymphocytes. Determinants described here on allotype suppressor T cells (Ts) are found on normal (nonsuppressed) lymphoid cells, but are not found on helper T cells (Th). These determinants are controlled by a locus mapping in the I region of the H-2 complex. In an accompanying publication we show that this locus (Ia-4) marks a new I subregion (I-J) and is expressed only on T cells. Thus Ia-4 determinants idenfity a T-cell subpopulation which includes Ts but not Th. Th also carry identifying surface determinants controlled by loci that map to the H-2 complex, probably within the I region. These determinants are not found on Ts. Data presented also establish that loci in the I region control determinants on Th, but do not conclusively demonstrate that these are the determinants that distinguish Th from Ts. The selective expression of H-2-controlled determinants on Ts and Th suggests that these determinants are directly involved in immunoregulation.


2020 ◽  
Vol 11 ◽  
Author(s):  
Miren Zuazo ◽  
Hugo Arasanz ◽  
Ana Bocanegra ◽  
Gonzalo Fernandez ◽  
Luisa Chocarro ◽  
...  

PD-L1/PD-1 blockade immunotherapy has significantly improved treatment outcome for several cancer types compared to conventional cytotoxic therapies. However, the specific molecular and cellular mechanisms behind its efficacy are currently unclear. There is increasing evidence in murine models and in patients that unveil the key importance of systemic immunity to achieve clinical responses under several types of immunotherapy. Indeed, PD-L1/PD-1 blockade induces the expansion of systemic CD8+ PD-1+ T cell subpopulations which might be responsible for direct anti-tumor responses. However, the role of CD4+ T cells in PD-L1/PD-1 blockade-induced anti-tumor responses has been less documented. In this review we focus on the experimental data supporting the “often suspected” indispensable helper function of CD4 T cells towards CD8 effector anti-tumor responses in cancer; and particularly, we highlight the recently published studies uncovering the key contribution of systemic CD4 T cells to clinical efficacy in PD-L1/PD-1 blockade therapies. We conclude and propose that the presence of specific CD4 T cell memory subsets in peripheral blood before the initiation of treatments is a strong predictor of responses in non-small cell lung cancer patients. Therefore, development of new approaches to improve CD4 responses before PD-L1/PD-1 blockade therapy could be the solution to increase response rates and survival of patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 350-350
Author(s):  
Leslie Kean ◽  
Sharon Sen ◽  
Mark E Metzger ◽  
Aylin Bonifacino ◽  
Karnail Singh ◽  
...  

Abstract Abstract 350 Introduction: Leukapheresis is a widely utilized modality for collecting hematopoietic stem cells (HSCs). While collection of CD34+ cells with stem-cell activity is the primary goal of most mobilization and leukapheresis procedures, these cells only represent ∼1% of most leukapheresis products. The profile of the non-CD34+ cells is likely influenced by the choice of mobilization strategy, and has the potential to profoundly impact the post-transplant immune milieu of the transplant recipient. Two of the most critical of the CD34-negative cell populations that are collected during leukapheresis include effector and regulatory T cells. Thus, in evaluating mobilization regimens, the impact on these regimens on the mobilization of each of these T cell populations into the peripheral blood should be rigorously evaluated. Methods: We used a rhesus macaque model to determine the impact that mobilization with AMD3100 (a.k.a., Plerixafor or Mozobil®)+ G-CSF (“A+G”) had on peripheral blood CD4+ and CD8+ effector T cell populations as well as on FoxP3+/CD4+ T cells. Three rhesus macaques were mobilized with 10ug/kg SQ of G-CSF for five consecutive days prior to leukapheresis. AMD3100 was administered at 1mg/kg SQ in combination with the last dose of G-CSF two hours prior to leukapheresis. Leukapheresis procedures were performed for two hours using a modified CS3000 Plus cell separator. A peripheral blood sample was taken before cytokine therapy, just prior to leukapheresis following mobilization, one hour during leukapheresis, and at the end of the procedure. These samples were analyzed by multicolor flow cytometry using a BD LSRII flow cytometer. Results: Bulk, effector, and regulatory T cell subpopulations were analyzed flow cytometrically. The proportion of total CD3+ T cells remained stable during mobilization and apheresis: Thus, CD3+ T cells represented 77% of peripheral blood lymphocytes prior to mobilization, and 69% post-apheresis). The balance of CD4+ to CD8+ T cells was also relatively stable. Thus, for one of the three animals tested, the CD4+ and CD8+ proportions remained unchanged after apheresis. For two animals, the average CD4+ % decreased from 67% prior to mobilization to 52% post-apheresis. In these two animals, there was a reciprocal increase in the % of CD3+ T cells that were CD8+ (28% pre-G+A to 40% post-apheresis). The CD28+/CD95- naïve (Tn), CD28+/CD95+ central memory (Tcm) and CD28-/CD95+ effector memory (Tem) subpopulation balance of CD4+ and CD8+ T cells was also determined, by comparing the relative percentages of each subpopulation post-apheresis with their relative percentages prior to mobilization. Compared to their pre-G+A percentages, the post-apheresis CD4+ percentages of Tn, Tcm and Tem were 92%, 93% and 160%, respectively. Thus, the relative proportions of Tn and Tcm CD4+ cells decreased post-apheresis, while the relative proportion of CD4+ Tem increased compared to cytokine administration. For CD8+ T cell subpopulations, the post-apheresis proportions of Tn, Tcm, and Tem compared to their pre-G-CSF proportions were 99%, 70% and 130%, respectively–thus demonstrating the same direction of change as observed for CD4+ T cells. The most striking change in T cell subpopulations occurred in the CD4+/FoxP3+ compartment. The proportion of CD4+ T cells expressing FoxP3 increased by an average of 600% when post-apheresis samples were compared to pre-mobilization samples (FoxP3+ cells were 9.6% of CD4+ T cells post-apheresis versus 1.5% pre-GCSF). An average of 32% of these FoxP3+ CD4+ T cells expressed high levels of CXCR4. CXCR4 expression has been previously documented on human FoxP3+ T cells (Zou et al., Cancer Res, 2004), but this is the first observation of high level expression of CXCR4 on macaque FoxP3+ CD4 T cells, or of their ability to be efficiently mobilized with AMD3100. Discussion: These results suggest that treatment with AMD3100 and G-CSF may mobilize T cell subsets into the peripheral blood that could have beneficial effects during allo-transplantation. The combination of an increase in Tem cells, which have been observed to have decreased ability to cause GvHD (Zheng et al., Blood 2008), along with FoxP3+/CD4+ T cells, which may have regulatory functions, suggests that A+G mobilization could produce an apheresis product with a beneficial CD34-negative cell profile for allogeneic transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3229-3229
Author(s):  
Osnat Bohana-Kashtan ◽  
Hyam Levitsky ◽  
Curt I. Civin

We sought to develop a better understanding of the T cells involved in the human allogeneic immune response, in order to eventually engineer a donor graft with reduced GVHD-mediating potential, without ablating general immune competence. Prior studies reported that all the activated CD4+ T cells responding to a specific antigen challenge reside within the CD4high population expressing high levels of membrane CD4. We identified a new population of activated CD8+ T cells that developed during an in vitro allogeneic immune response, along with the allo-activated CD4high T cell population. Analogous to activated CD4+ T cells, this new T cell population was distinguished by up-regulated CD8 (and CD38) expression (CD8highCD38+). In accordance with Martins et al. (Blood 2004, 104:3429), we found that the depletion of the CD4highCD38+ population resulted in reduced 2o response to the original 2nd party stimulators. In contrast, depletion of the CD8highCD38+ population resulted in an increased 2o response to 2nd party cells, with no change in the response to 3rd party or CMV antigens. Elevated numbers of CD8highCD38+ T cells potently reduced the 1o and 2o responses to 2nd party, but not to 3rd party cells or CMV antigens. The complementary, non-activated CD8normalCD38− T cell population had no inhibitory effect. Importantly, we found that CD8highCD38+ T cells mediated both a specific cytotoxic response (that could be inhibited by the pan-caspase inhibitor, Z-VAD), and a specific suppressive response toward the original 2nd party stimulators (that was not affected by Z-VAD), and within this CD8highCD38+ population, there was a subpopulation of cytotoxic T cells (perforin+LAMP1+CD56+CD11b+CD11c+) and a subpopulation of non-cytotoxic T cells. Furthermore, we found that although CD8highCD38+ T cells differentially expressed CD28, both CD8highCD38+CD28− and CD8highCD38+CD28− T cells mediated a cytotoxic as well as a suppressor T cell response toward the original 2nd party cells (different from the published suppressive function of CD8+CD28− T cells observed by Liu et al, Int Immunol 1998, 10:775). Upon separation of cytotoxic CD8highCD38+ T cells from suppressor CD8highCD38+ T cells, we will explore the GVHD potential of these 2 novel activated CD8high T cell subpopulations, in a sensitive in vivo xenograft model for GVHD using NOD/SCID/IL2Rγnull immunodeficient mice.


1988 ◽  
Vol 34 (12) ◽  
pp. 2415-2417 ◽  
Author(s):  
D Fuchs ◽  
M Banekovich ◽  
A Hausen ◽  
J Hutterer ◽  
G Reibnegger ◽  
...  

Abstract We measured neopterin, a biochemical indicator for the activation of cell-mediated immune reactions, in urines from 105 individuals at risk of infection with human immunodeficiency virus-1 (HIV-1), 83 of whom were seropositive for antibody to HIV-1. We compared absolute numbers of T-cell subsets (CD4+ helper/inducer T-cells, CD8+ suppressor/cytotoxic T-cells), and the ratio of CD4+ T-cells to CD8+ T-cells with the urinary neopterin concentrations. Concentrations of neopterin in urine were inversely correlated with absolute numbers of CD4+ T-cells and with CD4+/CD8+ ratios in anti-HIV-1 seropositive subjects but not in those seronegative. Various statistical comparisons of the data further demonstrated that neopterin concentrations showed larger differences between anti-HIV-1 seronegative and seropositive subjects than absolute numbers of CD4+ T-cells or CD4+/CD8+ ratios. These results seem to indicate that neopterin concentrations increase earlier in the course of HIV-1 infection, before effects on T-cell subpopulations are detectable, and may further support the suggestion that neopterin measurement could be of use for monitoring infected subjects or predicting the progression of disease.


1984 ◽  
Vol 92 (4) ◽  
pp. 381-385 ◽  
Author(s):  
Jonas T. Johnson ◽  
Bruce S. Rabin ◽  
Barry Hirsch ◽  
Patricia B. Thearle

Peripheral blood T-cell subpopulations were quantitated with monoclonal antibodies in a group of 27 patients with biopsy-proved squamous cell carcinoma of the head and neck. Abnormal quantitative relationships between helper/inducer T cells (Th) and suppressor/cytotoxic T cells (Ts) were encountered in many patients. Short-term follow-up of these patients did not demonstrate a correlation between these immune parameters and clinical course. Longer follow-up and expansion of the data base will be necessary before a determination can be made of the value of quantitative T-cell subpopulation analysis relative to its use as a prognostic indicator in patients with head and neck cancer.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Stephanie M. Dillon ◽  
Tezha A. Thompson ◽  
Allison J. Christians ◽  
Martin D. McCarter ◽  
Cara C. Wilson

Abstract Background The etiology of the low-level chronic inflammatory state associated with aging is likely multifactorial, but a number of animal and human studies have implicated a functional decline of the gastrointestinal immune system as a potential driver. Gut tissue-resident memory T cells play critical roles in mediating protective immunity and in maintaining gut homeostasis, yet few studies have investigated the effect of aging on human gut T cell immunity. To determine if aging impacted CD4 T cell immunity in the human large intestine, we utilized multi-color flow cytometry to measure colonic lamina propria (LP) CD4 T cell frequencies and immune-modulatory marker expression in younger (mean ± SEM: 38 ± 1.5 yrs) and older (77 ± 1.6 yrs) adults. To determine cellular specificity, we evaluated colon LP CD8 T cell frequency and phenotype in the same donors. To probe tissue specificity, we evaluated the same panel of markers in peripheral blood (PB) CD4 T cells in a separate cohort of similarly aged persons. Results Frequencies of colonic CD4 T cells as a fraction of total LP mononuclear cells were higher in older persons whereas absolute numbers of colonic LP CD4 T cells per gram of tissue were similar in both age groups. LP CD4 T cells from older versus younger persons exhibited reduced CTLA-4, PD-1 and Ki67 expression. Levels of Bcl-2, CD57, CD25 and percentages of activated CD38+HLA-DR+ CD4 T cells were similar in both age groups. In memory PB CD4 T cells, older age was only associated with increased CD57 expression. Significant age effects for LP CD8 T cells were only observed for CTLA-4 expression, with lower levels of expression observed on cells from older adults. Conclusions Greater age was associated with reduced expression of the co-inhibitory receptors CTLA-4 and PD-1 on LP CD4 T cells. Colonic LP CD8 T cells from older persons also displayed reduced CTLA-4 expression. These age-associated profiles were not observed in older PB memory CD4 T cells. The decline in co-inhibitory receptor expression on colonic LP T cells may contribute to local and systemic inflammation via a reduced ability to limit ongoing T cell responses to enteric microbial challenge.


Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.


2020 ◽  
Vol 22 (1) ◽  
pp. 274
Author(s):  
Claudia Curci ◽  
Angela Picerno ◽  
Nada Chaoul ◽  
Alessandra Stasi ◽  
Giuseppe De Palma ◽  
...  

Adult Renal Stem/Progenitor Cells (ARPCs) have been recently identified in the human kidney and several studies show their active role in kidney repair processes during acute or chronic injury. However, little is known about their immunomodulatory properties and their capacity to regulate specific T cell subpopulations. We co-cultured ARPCs activated by triggering Toll-Like Receptor 2 (TLR2) with human peripheral blood mononuclear cells for 5 days and 15 days and studied their immunomodulatory capacity on T cell subpopulations. We found that activated-ARPCs were able to decrease T cell proliferation but did not affect CD8+ and CD4+ T cells. Instead, Tregs and CD3+ CD4- CD8- double-negative (DN) T cells decreased after 5 days and increased after 15 days of co-culture. In addition, we found that PAI1, MCP1, GM-CSF, and CXCL1 were significantly expressed by TLR2-activated ARPCs alone and were up-regulated in T cells co-cultured with activated ARPCs. The exogenous cocktail of cytokines was able to reproduce the immunomodulatory effects of the co-culture with activated ARPCs. These data showed that ARPCs can regulate immune response by inducing Tregs and DN T cells cell modulation, which are involved in the balance between immune tolerance and autoimmunity.


1979 ◽  
Vol 149 (1) ◽  
pp. 228-233 ◽  
Author(s):  
A B Reske-Kunz ◽  
M P Scheid ◽  
E A Boyse

Mice of the HRS strain, which carry the mutant gene hr, were examined for abnormalities in representation of the three T-cell sets Ly1, Ly23, and Ly123 in the spleen. The salient feature of hr/hr mice, which are immunologically deficient, in comparison with +/hr segregants, was a gross disproportion in numbers of cells belonging to the Ly1 and Ly123 sets, at the age of 3--3.5 mo. At this age, Ly123 cells of hr/hr spleen outnumbered Ly1 cells by 2:1, whereas in +/hr spleens Ly123 cells were outnumbered by approximately 1:2. Cells from pooled lymph nodes of hr/hr mice did not show a correspondingly gross disporprotion of Ly1 and Ly123 cells. Total counts of splenic T cells, and of B cells, were not significantly different in hr/hr and +/hr mice.


Sign in / Sign up

Export Citation Format

Share Document