scholarly journals Designing Zirconium Coated Polystyrene Colloids and Application

2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Diana Chira ◽  
Seong S. Seo

A simple technique has been developed to prepare core colloids that are modified using zirconium oxychloride, based on heating a solution of core colloid composites, consisting of poly (ethylenimine) (PEI) and zirconium oxychloride. The interaction of zirconium oxychloride with the polystyrene (PS) core colloids has been investigated using Fourier transform-infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) data. FT-IR studies confirm the occurrence of amine groups present in PEI which are oxidized to carboxyl groups after the reaction. The EDX data and the SEM images confirm the presence of zirconium particles immobilized on the polystyrene surfaces. Demeton, a highly toxic nerve agent, was used due to its ability to easily bind through its organophosphate group illustrating a practical application of the PS-PEI-Zr particles. Attenuated Total Reflection (ATR) Spectroscopy was used to assess the interactions between the toxic nerve agent demeton-S and the PS-PEI-Zr particles. The results show that the presented technique for coating polystyrene core colloids with zirconium was successfully accomplished, and the newly formed particles easily bond with demeton agents through the P=O functional group.

2013 ◽  
Vol 678 ◽  
pp. 248-252
Author(s):  
K. Kavi Rasu ◽  
Dhandapani Vishnushankar ◽  
V. Veeravazhuthi

Bismuth sulfide (Bi2S3) and Polyvinyl pyrrolidone (PVP) encapsulated Bi2S3 Nanoparticles are synthesized from aqueous solutions at room temperature. Synthesized samples are subjected to UV-Visible Spectroscopy, X-Ray Diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive Analysis of X-ray (EDAX), Transmission Electron Microscopy (TEM) and FT-IR studies and their results are compared. X-ray diffraction spectrum reveals the crystalline nature of the synthesized samples. Grain size value of PVP/ Bi2S3 nanoparticles show a decrease when compared to Bi2S3 nanoparticles and this ensures the good encapsulant effect of PVP on Bi2S3 nanoparticles. SEM images show that all the particles in the synthesized sample are nearly equal in size. From the TEM image we conclude that the particle size lies between 30nm to 70nm. Finally the samples are subjected to EDAX studies for determining their composition.


2002 ◽  
Vol 56 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Xiaohua Yi ◽  
Karen Nerbonne ◽  
John Pellegrino

We present an experimental method for measuring diffusion of lubricants (or any highly viscous fluid) in polymers using Fourier transform infrared (FT-IR) attenuated total reflection (ATR) spectroscopy. Unlike the conventional FT-IR ATR diffusion measurement, in which a polymer sample is sandwiched between the penetrant and an internal reflection element (IRE), in this method, a thin layer of penetrant (for example, a lubricant) is sandwiched between the IRE and the polymer sample. This allows accurate control and measurement of the thickness of the lubricant layer, which, in turn, facilitates subsequent data analysis. The diffusion is studied by monitoring the time-resolved change in absorbance of either a unique polymer or penetrant band. A feature of this new method is that it can provide an estimate of solubility, as well as an estimate of the diffusivity of the penetrant in the polymer. Using this method, we studied the diffusion of mineral oil and a commercial fluorocarbon ether lubricant (Krytox® 143AC‡) in poly(propylene) (PP) film at room temperature. The experimental data was modeled using a Fickian model with impermeable and saturated boundary conditions applied at the IRE/lubricant and lubricant/polymer interfaces, respectively. The diffusivity and solubility of mineral oil in PP were found to be 1.34 ± 0.35 (×10−10) cm2/s and 0.77 ± 0.13 (×10−2) g/g of PP, respectively. The current model was unable to quantitatively describe the diffusion of the Krytox® 143AC in the PP, possibly due to excessive swelling.


1992 ◽  
Vol 259 ◽  
Author(s):  
Takeo Hattori ◽  
Hiroki Ogawa

ABSTRACTChemical structures of native oxides formed during wet chemical treatments on NH4F treated Si(111) surfaces were investigated using X-ray Photoelectron Spectroscopy (XPS) and Fourier Transformed Infrared Attenuated Total Reflection(FT-IR-ATR). It was found that the amounts of Si-H bonds in native oxides and those at native oxide/silicon interface are negligibly small in the case of native oxides formed in H2SO4-H2O2-H2O solution. Based on this discovery, it was confirmed that native oxides can be characterized by the amount of Si-H bonds in native oxides. Furthermore, it was found that the combination of various wet chemical treatments with the treatment in NH4OH-H2O2-H2O solution results in the drastic decrease in the amount of Si-H bonds in native oxides.


2021 ◽  
Author(s):  
Mahyar Fazeli ◽  
Faegheh Fazeli ◽  
Tamrin Nuge ◽  
Omid Abdoli ◽  
Shokooh Moghaddam

Abstract The principal intention of this work is to fabricate and characterize the polyamide/chitosan nanocomposite by a novel single solvent method through the electrospinning procedure. The thermal properties and morphology of prepared nanocomposite are studied by thermogravimetric analysis (TGA) and field-emission scanning electron microscopy (FE-SEM). TGA exposed that the primary decomposition temperature is reduced with rising of chitosan content in the nanocomposites and origin disintegration temperature for polyamide/chitosan nanocomposites is perceived to be in the range from 300 to 500°C. Also, FE-SEM images demonstrated that the nanofibers of chitosan have good adhesion on the matrix and are well-oriented. Besides, the crystallinity and structural characteristics of the polyamide/chitosan nanocomposites are investigated by using X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FT-IR), respectively. The results of XRD proved that the successful blending of chitosan in polyamide is achieved via the electrospinning method. FT-IR results demonstrate that the nanofibers are consist of amine groups. Also, the electrical properties of the nanocomposite improved with the increasing content of chitosan and the conductivity of the polyamide/chitosan 5 wt% demonstrates the maximum current of 0.3 nA. Besides, the sheet resistance of the composite reduced 118 to 20 × 109 Ω with raising the chitosan volume from 0 to 5 wt%.


2011 ◽  
Vol 332-334 ◽  
pp. 317-320 ◽  
Author(s):  
Hui Qin Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and Poly(lactic acid) (PLA) were prepared via an electrospinning process. The surface morphology, thermal properties and crystal structure of PLA/PANI-DBSA nanofibers are characterized using Fourier transform infrared spectroscopy (FT-IR), wide-angle x-ray diffraction (WAXD) and scanning electron microscopy (SEM). SEM images showed that the morphology and diameter of the nanofibers were affected by the weight ratio of blend solution.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1512 ◽  
Author(s):  
Jeong Su Choi ◽  
Ji Woong Lee ◽  
Un Chul Shin ◽  
Min Woo Lee ◽  
Dae Jin Kim ◽  
...  

This paper investigated the antifungal and antibiofilm activity of silver nanoparticles synthesized with Lycopersicon esculentum extracts against Candida species. Lycopersicon esculentum extracts obtained by homogenization were mixed with silver nitrate to synthesize silver nanoparticles. Analysis of the particle characteristics by UV–Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FT-IR) confirmed that the Lycopersicon esculentum extracts effectively served as reductants and capping agents. Minimum inhibitory concentration (MIC) tests were conducted to confirm antifungal activity against Candida species. In all the tested species, the silver nanoparticles inhibited the growth of Candida. Moreover, the SEM images of Candida species treated with silver nanoparticles synthesized using natural extracts of Lycopersicon esculentum showed that silver nanoparticles adhered to the surface of Candida, which induced pore formation in the membranes and prevented their normal growth. Ultimately, these abnormal forms of Candida were thought to be less able to form biofilms than normal Candida. The antifungal and antibiofilm activities of silver nanoparticles against Candida are expected to be utilized in various fields and contribute in particular to developments in nanomedicine.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 26
Author(s):  
Patrycja Wilczewska ◽  
Aleksandra Bielicka-Giełdoń ◽  
Agnieszka Fiszka Borzyszkowska ◽  
Aleksandra Pieczyńska ◽  
Ewa Maria Siedlecka

A series of Bi4O5Br2 photocatalysts were prepared via an innovation method of synthesis with ionic liquids (ILs). The crystal structures were investigated by X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The Field Emission Scanning Electron Microscope (FE-SEM) images illustrated the unique structure of prepared photocatalysts. The photocatalysts were also characterized by N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis/DRS) and photoluminescence spectra (PL). The role of ILs in synthesis of Bi4O5Br2 on morphology and photocatalytic properties were investigated. Rhodamine B, 5-fluorouracil and chromium (VI) were used as the model micropollutants to evaluated adsorption capacity, photooxidation and photoreduction ability of prepared Bi4O5Br2 under artificial solar light. This work provided a new thought for enhanced photocatalytic activity of bismuth oxybromide photocatalysts.


2002 ◽  
Vol 01 (05n06) ◽  
pp. 477-481 ◽  
Author(s):  
LEE DON KEUN ◽  
YOUNG SOO KANG

Silver nanoclusters have been formed by thermal decomposition of Ag-oleate complex. Transmission electron microscopic (TEM) images of the particles showed two-dimensional assembly of particles with diameter of 10.5 nm. Energy-dispersive X-ray (EDX) spectrum and X-ray diffraction (XRD) peaks of the nanoclusters showed the highly crystalline nature of the silver structures. The decomposition of silver-oleate complex was analyzed by Thermo Gravimetric Analyzer (TGA) and the crystallization process was observed by XRD. The removal of the surfactant surrounding silver nanoclusters was measured by FT-IR and SEM images.


Antibiotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 25 ◽  
Author(s):  
Ioannis Ketikidis ◽  
Christina N. Banti ◽  
Nikolaos Kourkoumelis ◽  
Constantinos G. Tsiafoulis ◽  
Christina Papachristodoulou ◽  
...  

Conjugation of penicillin G (PenH) with silver(I) ions forms a new CoMeD (conjugate of metal with a drug) with formula [Ag(pen)(CH3OH)]2 (PenAg). PenAg was characterized by a plethora of physical and spectroscopic techniques, which include in the solid state m.p.; elemental analysis; X-ray fluorescence (XRF) spectroscopy; scanning electron microscopy (SEM); energy-dispersive X-ray spectroscopy (EDX); FT-IR; and in solution: attenuated total reflection spectroscopy (FT-IR-ATR), UV–Vis, 1H NMR, and atomic absorption (AA). The structure of PenAg was determined by NMR spectroscopy. Silver(I) ions coordinate to the carboxylic group of PenH, while secondary intra-molecular interactions are developed through (i) the nitrogen atom of the amide group in MeOD-d4 or (ii) the sulfur atom in the thietane ring in deuterated dimethyl sulfoxide DMSO-d6. The antibacterial activities of PenAg and the sodium salt of penicillin (PenNa) (the formulation which is clinically used) against Gram positive (Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus)) and Gram negative (Pseudomonas aeruginosa (P. aeuroginosa PAO1)) bacteria were evaluated by the means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone (IZ). PenAg inhibits the growth of the Gram negative bacterial strain P. aeuroginosa with a MIC value of 23.00 ± 2.29 μM, in contrast to PenNa, which shows no such activity (>2 mM). The corresponding antimicrobial activities of PenAg against the Gram positive bacteria S. epidermidis and S. aureus are even better than those of PenNa. Moreover, PenAg exhibits no in vivo toxicity against Artemia salina at concentration up to 300 μΜ. The wide therapeutic window and the low toxicity, make PenAg a possible candidate for the development of a new antibiotic.


Sign in / Sign up

Export Citation Format

Share Document