scholarly journals Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages—Part II: Detailed Study of the Effects on Tip Leakage Phenomena

2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

This article presents the detailed study of rotor tip leakage related phenomena in a low speed axial compressor rotor passages for three sweep configurations [Unswept (UNS), Tip Chordline Swept (TCS) and Axially Swept (AXS)]. Fifteen domains are numerically studied with 5 sweep configurations (0°, 20°TCS, 30°TCS, 20°AXS, and 30°AXS) and for 3 tip clearances (0.0%, 0.7% and 2.7% of the blade chord). Results were well validated with experimental data. Observations near the tip reveal that UNS rotor shows high sensitivity than the swept rotors in the blade pressure distribution with change in tip clearance. AXS rotor has high loading capability and less tip clearance effect on blade loading at the near stall mass flow. Downstream shift of the vortex rollup along the chord is observed with increased flow coefficient and increment in the tip gap height. In particular, the effect of flow coefficient is more predominant on this effect. Tip vortex-related flow blockage is less with the swept rotors. Among the rotors, the AXS rotor is found to incur low total pressure losses attributable to tip leakage. Effect of incidence is observed on the flow leakage direction.

Author(s):  
I. G. Nikolaou ◽  
K. C. Giannakoglou ◽  
K. D. Papailiou

A three-dimensional space marching code is used for the numerical modelling of the flow in an isolated axial flow compressor rotor. The rotor is analyzed at four operating points, up to near stall conditions. Numerical results are first validated versus available experimental data and then further exploited in order to illuminate flow patterns in the inter-blade region. The tip leakage impact on the main passage flow and losses level as well as the effect of blade loading on the hub corner stall extent and the radial displacement of the flow are fully detailed. In order to account for the rotor geometry, the modifications performed in an existing software are mainly concerned with the accurate modelling of the clearance which is formed above the curved blade tip; for this purpose, a local H-type mesh is embedded to the main passage grid.


Author(s):  
Yanhui Wu ◽  
Wuli Chu ◽  
Xingen Lu ◽  
Junqiang Zhu

The current paper reports on investigations with an aim to advance the understanding of the flow field near the casing of a small-scale high-speed axial flow compressor rotor. Steady three dimensional viscous flow calculations are applied to obtain flow fields at various operating conditions. To demonstrate the validity of the computation, the numerical results are first compared with available measured data. Then, the numerically obtained flow fields are analyzed to identify the behavior of tip leakage flow, and the mechanism of blockage generation arising from flow interactions between the tip clearance flow, the blade/casing wall boundary layers, and non-uniform main flow. The current investigation indicates that the “breakdown” of the tip leakage vortex occurs inside the rotor passage at the near stall condition. The vortex “breakdown” results in the low-energy fluid accumulating on the casing wall spreads out remarkably, which causes a sudden growth of the casing wall boundary layer having a large blockage effect. A low-velocity region develops along the tip clearance vortex at the near stall condition due to the vortex “breakdown”. As the mass flow rate is further decreased, this area builds up rapidly and moves upstream. This area prevents incoming flow from passing through the pressure side of the passage and forces the tip leakage flow to spill into the adjacent blade passage from the pressure side at the leading edge. It is found that the tip leakage flow exerts little influence on the development of the blade suction surface boundary layer even at the near stall condition.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

This article presents the study of Tip Chordline Sweeping (TCS) and Axial Sweeping (AXS) of low-speed axial compressor rotor blades against the performance of baseline unswept rotor (UNS) for different tip clearance levels. The first part of the paper discusses the changes in design parameters when the blades are swept, while the second part throws light on the effect of sweep on tip leakage flow-related phenomena. 15 domains are studied with 5 sweep configurations (, TCS, TCS, AXS, and AXS) and for 3 tip clearances (0.0%, 0.7%, and 2.7% of the blade chord). A commercial CFD package is employed for the flow simulations and analysis. Results are well validated with experimental data. Forward sweep reduced the flow incidences. This is true all over the span with axial sweeping while little higher incidences below the mid span are observed with tip chordline sweeping. Sweeping is observed to lessen the flow turning. AXS rotors demonstrated more efficient energy transfer among the rotors. Tip chordline sweep deflected the flow towards the hub while effective positive dihedral induced with axial sweeping resulted in outward deflection of flow streamlines. These deflections are more at lower mass flow rates.


1986 ◽  
Vol 108 (1) ◽  
pp. 22-31 ◽  
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram ◽  
J. Zhang

The blade-to-blade variation of relative stagnation pressure losses in the tip region inside the rotor of a single-stage, axial-flow compressor is presented and interpreted in this paper. The losses are measured at two flow coefficients (one at the design point and the other at the near peak pressure rise point) to discern the effect of blade loading on the end-wall losses. The tip clearance losses are found to increase with an increase in the pressure rise coefficient. The losses away from the tip region and near the hub regions are measured downstream. The losses are integrated and interpreted in this paper.


1970 ◽  
Vol 92 (4) ◽  
pp. 407-414 ◽  
Author(s):  
Y. Le Bot ◽  
J. Paulon ◽  
P. Belaygue

A single, isolated, test axial compressor rotor in a constant section annular duct is used for determination of off-design pressure losses. The results obtained are interpreted by means of loss coefficients and description of the flow field is deduced from a simplified actuator theory that takes into account pressure losses. Rotor stall limit is interpreted as that limit mass flow rate for which no continuous solution of the equations can be obtained. Unstable operations that take place for mass flow rates smaller than the stall limit are shown to be either rotating stall or wall separation, according to the shape of the downstream pressure profile. Experiments on the rotor confirm validity of these assumptions.


2015 ◽  
Vol 741 ◽  
pp. 504-508
Author(s):  
Yong Lei Qu ◽  
Bo Wan ◽  
Xiao Meng Pei

Tip clearance of compressor rotor blade is introduced for avoiding friction collision between the moving blade and the casing. Because of the existence of the pressure difference between pressure surfaces and the suction surfaces of the blade, the blending of the leakage flow with the mainstream causes losses, which affects internal flow field and overall performance of the compressor. In this article, numerical analysis software is used to study the multi-condition performance of a six and a half axial flow compressor, for analyzing the impact of leakage flow patterns on compressor.


Author(s):  
Rubén Bruno Díaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Francisco Carlos Elizio de Paula ◽  
Luiz Henrique Lindquist Whitacker

Abstract Numerical simulations were carried out with the purpose of investigating the effect of applying circumferential grooves at axial compressor casing passive wall treatment to enhance the stall margin and change the tip leakage flow. The tip leakage flow is pointed out as one of the main contributors to stall inception in axial compressors. Hence, it is of major importance to treat appropriately the flow in this region. Circumferential grooves have shown a good performance in enhancing the stall margin in previous researches by changing the flow path in the tip clearance region. In this work, a passive wall treatment with four circumferential grooves was applied in the transonic axial compressor NASA Rotor 37. Its effect on the axial compressor performance and the flow in the tip clearance region was analyzed and set against the results attained for the smooth wall case. A 2.63% increase in the operational range of the axial compressor running at 100%N, was achieved, when compared with the original smooth wall casing configuration. The grooves installed at compressor casing, causes an increase in the flow entropy generation due to the high viscous effects in this gap region, between the rotor tip surface and casing with grooves. These viscous effects cause a drop in the turbomachine efficiency. For the grooves configurations used in this work, an efficiency drop of 0.7% was observed, compared with the original smooth wall. All the simulations were performed based on 3D turbulent flow calculations using Reynolds Averaged Navier-Stokes equations, and the flow eddy viscosity was determined using the two-equation SST turbulence model. The details of the grooves geometrical dimensions and its implementation are described in the paper.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6143
Author(s):  
Xiaoxiong Wu ◽  
Bo Liu ◽  
Botao Zhang ◽  
Xiaochen Mao

Numerical simulations have been performed to study the effect of the circumferential single-grooved casing treatment (CT) at multiple locations on the tip-flow stability and the corresponding control mechanism at three tip-clearance-size (TCS) schemes in a transonic axial flow compressor rotor. The results show that the CT is more efficient when its groove is located from 10% to 40% tip axial chord, and G2 (located at near 20% tip axial chord) is the best CT scheme in terms of stall-margin improvement for the three TCS schemes. For effective CTs, the tip-leakage-flow (TLF) intensity, entropy generation and tip-flow blockage are reduced, which makes the interface between TLF and mainstream move downstream. A quantitative analysis of the relative inlet flow angle indicates that the reduction of flow incidence angle is not necessary to improve the flow stability for this transonic rotor. The control mechanism may be different for different TCS schemes due to the distinction of the stall inception process. For a better application of CT, the blade tip profile should be further modified by using an optimization method to adjust the shock position and strength during the design of a more efficient CT.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Xingen Lu ◽  
Wuli Chu ◽  
Junqiang Zhu ◽  
Yangfeng Zhang

In order to advance the understanding of the fundamental mechanisms of axial skewed slot casing treatment and their effects on the subsonic axial-flow compressor flow field, the coupled unsteady flow through a subsonic compressor rotor and the axial skewed slot was simulated with a state-of-the-art multiblock flow solver. The computational results were first compared with available measured data, that showed the numerical procedure calculates the overall effect of the axial skewed slot correctly. Then, the numerically obtained flow fields were interrogated to identify the physical mechanism responsible for improvement in stall margin of a modern subsonic axial-flow compressor rotor due to the discrete skewed slots. It was found that the axial skewed slot casing treatment can increase the stall margin of subsonic compressor by repositioning of the tip clearance flow trajectory further toward the trailing of the blade passage and retarding the movement of the incoming∕tip clearance flow interface toward the rotor leading edge plane.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
H. Sasaki

The purpose of this study is to have a better understanding of the unsteady behavior of tip clearance flow at near-stall condition from a multi-passage simulation and to clarify the relation between such unsteadiness and rotating disturbance. This study is motivated by the following concern. A single passage simulation has revealed the occurrence of the tip leakage vortex breakdown at near-stall condition in a transonic axial compressor rotor, leading to the unsteadiness of the tip clearance flow field in the rotor passage. These unsteady flow phenomena were similar to those in the rotating instability, which is classified in one of the rotating disturbances. In other words it is possible that the tip leakage vortex breakdown produces a rotating disturbance such as the rotating instability. Three-dimensional unsteady RANS calculation was conducted to simulate the rotating disturbance in a transonic axial compressor rotor (NASA Rotor 37). The four-passage simulation was performed so as to capture a short length scale disturbance like the rotating instability and the spike-type stall inception. The simulation demonstrated that the unsteadiness of tip leakage vortex, which was derived from the vortex breakdown at near-stall condition, invoked the rotating disturbance in the rotor, which is similar to the rotating instability.


Sign in / Sign up

Export Citation Format

Share Document