scholarly journals Isotope Effect on Eutectic and Hydrate Melting Temperatures in the Water-THF System

2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
C. Y. Jones ◽  
J. S. Zhang ◽  
J. W. Lee

Differential scanning calorimetry was used to study the effect of isotopic substitution on the eutectic and melting temperatures in the water-tetrahydrofuran (THF) system with THF molar fractions near the stoichiometry of the hydrate phase. Deuteration of the host causes an opposite effect from that of the guest with respect to the hydrate liquidus curve and eutectic melting temperature. The eutectic temperature in D2O-containing systems is approximately 3.7 K higher than that in H2O-containing systems. The melting temperatures of THF and deuterated THF hydrates increase by roughly 3.5 K with heavy water. The inclusion of deuterated THF causes a depression of the hydrate liquidus temperatures and a small but measurable effect on the eutectic temperature.

2012 ◽  
Vol 191 ◽  
pp. 159-168 ◽  
Author(s):  
Roman Przeliorz ◽  
Jaroslaw Piątkowski

The aim of the studies was to determine the oxidation kinetics of two magnesium alloys, i.e. WE43 and MSR-B, in CO2 atmosphere with and without the addition of 2 vol.% H2O. The rate of oxidation was measured by thermogravimetry in the temperature range of 530-580°C, i.e. below and above the eutectic melting point. The melting point of the eutectic mixture was determined by differential scanning calorimetry (DSC). The corrosion products were analysed by scanning electron microscopy (SEM) and X-ray microanalysis combined with EDS. Studies showed that on the WE43 alloy, a two-layer scale was formed, in which the outer part was composed of yttrium and magnesium oxides, while the inner part contained only yttrium oxide. The scale was found to preserve its good protective properties even above the eutectic temperature. Analysis of the results showed that on the MSR-B alloy, under a thin, uneven layer of scale, the process of internal oxidation occurred, and at a temperature of 580°C, the alloy underwent partial melting


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 201
Author(s):  
Hao Bian ◽  
Lu Ai ◽  
Klaus Hellgardt ◽  
Geoffrey C. Maitland ◽  
Jerry Y. Y. Heng

In a study designed to investigate the melting behaviour of natural gas hydrates which are usually formed in porous mineral sediments rather than in bulk, hydrate phase equilibria for binary methane and water mixtures were studied using high-pressure differential scanning calorimetry in mesoporous and macroporous silica particles having controlled pore sizes ranging from 8.5 nm to 195.7 nm. A dynamic oscillating temperature method was used to form methane hydrates reproducibly and then determine their decomposition behaviour—melting points and enthalpies of melting. Significant decreases in dissociation temperature were observed as the pore size decreased (over 6 K for 8.5 nm pores). This behaviour is consistent with the Gibbs–Thomson equation, which was used to determine hydrate–water interfacial energies. The melting data up to 50 MPa indicated a strong, essentially logarithmic, dependence on pressure, which here has been ascribed to the pressure dependence of the interfacial energy in the confined media. An empirical modification of the Gibbs–Thomson equation is proposed to include this effect.


1993 ◽  
Vol 296 (2) ◽  
pp. 489-496 ◽  
Author(s):  
A J Bailey ◽  
T J Sims ◽  
N C Avery ◽  
C A Miles

The incubation of lens capsules with glucose in vitro resulted in changes in the mechanical and thermal properties of type-IV collagen consistent with increased cross-linking. Differential scanning calorimetry (d.s.c.) of fresh lens capsules showed two major peaks at melting temperatures Tm 1 and Tm 2 at approx. 54 degrees C and 90 degrees C, which can be attributed to the denaturation of the triple helix and 7S domains respectively. Glycosylation of lens capsules in vitro for 24 weeks caused an increase in Tm 1 from 54 degrees C to 61 degrees C, while non-glycosylated, control incubated capsules increased to a Tm 1 of 57 degrees C. The higher temperature required to denature the type-IV collagen after incubation in vitro suggested increased intermolecular cross-linking. Glycosylated lens capsules were more brittle than fresh samples, breaking at a maximum strain of 36.8 +/- 1.8% compared with 75.6 +/- 6.3% for the fresh samples. The stress at maximum strain (or ‘strength’) was dramatically reduced from 12.0 to 4.7 N.mm.mg-1 after glycosylation in vitro. The increased constraints within the system leading to loss of strength and increased brittleness suggested not only the presence of more cross-links but a difference in the location of these cross-links compared with the natural lysyl-aldehyde-derived cross-links. The chemical nature of the fluorescent glucose-derived cross-link following glycosylation was determined as pentosidine, at a concentration of 1 pentosidine molecule per 600 collagen molecules after 24 weeks incubation. Pentosidine was also determined in the lens capsules obtained from uncontrolled diabetics at a level of about 1 per 100 collagen molecules. The concentration of these pentosidine cross-links is far too small to account for the observed changes in the thermal and mechanical properties following incubation in vitro, clearly indicating that another as yet undefined, but apparently more important cross-linking mechanism mediated by glucose is taking place.


2005 ◽  
Vol 896 ◽  
Author(s):  
Mikhaylo A Trunov ◽  
Swati Umbrakar ◽  
Mirko Schoenitz ◽  
Joseph T Mang ◽  
Edward L Dreizin

AbstractRecently, nanometer-sized aluminum powders became available commercially and their use as potential additives to propellants, explosives, and pyrotechnics has attracted significant interest. It has been suggested that very low melting temperatures are expected for nano-sized aluminum powders and that such low melting temperatures could accelerate oxidation and trigger ignition much earlier than for regular, micron-sized aluminum powders. The objective of this work was to investigate experimentally the melting and oxidation behavior of nano-sized aluminum powders. Powder samples with three different nominal sizes of 44, 80, and 121 nm were provided by Nanotechnologies Inc. The particle size distributions were measured using small angle x-ray scattering. Melting was studied by differential scanning calorimetry where the powders were heated from room temperature to 750 °C in argon environment. Thermogravimetric analysis was used to measure the mass increase indicative of oxidation while the powders were heated in an oxygen-argon gas mixture. The measured melting curves were compared to those computed using the experimental particle size distributions and thermodynamic models describing the melting temperature and enthalpy as functions of the particle size. The melting behavior predicted by different models correlated with the experimental observations only qualitatively. Characteristic step-wise oxidation was observed for all studied nanopowders. The observed oxidation behavior was well interpreted considering the recently established kinetics of oxidation of micron-sized aluminum powders. No correlation was found between the melting and oxidation of aluminum nanopowders.


2021 ◽  
Vol 316 ◽  
pp. 533-537
Author(s):  
Pavel L. Reznik ◽  
Boris V. Ovsyannikov

The article presents the results of an investigation of microstructural features and mechanical characteristics of Al-5.0Cu-0.5Mg alloy containing up to 0.4 wt. % Ag and up to 0.1 wt. % Ce. The experiment was conducted using optical microscopy, Scanning Electron Microscopy as well as an electron probe micro-analyzer and Differential Scanning Calorimetry. Samples in cast condition and after heat treatment were examined. The melting temperatures of non-equilibrium eutectics (non-equilibrium solidus), equilibrium solidus and liquidus were determined. The optimal temperature of the homogenizing heat treatment was determined, which was 500°C. Using this heat treatment mode resulted in the elimination of dendritic segregation and complete dissolution of silver in aluminum. Injection of cerium into the Al-Cu-Mg-Ag system during crystallization of the melt is accompanied by the formation of a coarse four-component phase, which has the morphology of polyhedrons, is on the grain boundaries. The estimation of the relation between microstructure characteristics and mechanical properties of the alloy has been made.


2021 ◽  
Vol 285 ◽  
pp. 07034
Author(s):  
Yulia Tertyshnaya ◽  
Maksim Zakharov ◽  
Alina Ivanitskikh ◽  
Anatoliy Popov

In the work an eco-friendly non-woven fiber made of polylactide and natural rubber with a rubber content from 0 to 15 wt.% was obtained by electrospinning. The influence of distilled water and UV irradiation on the agrofibers has been investigated. The water sorption test showed that the addition of natural rubber into the polylactide matrix does not significantly affect the degree of water absorption of the fibrous materials, which is in the range of 49-50.6%. Thermal characteristics after 180 days of degradation in distilled water at 22±2 oC and UV irradiation at a wavelength of 365 nm during 100 hours were determined using the differential scanning calorimetry. Changes in the values for glass transition and melting temperatures, and the degree of crystallinity were determined.


2021 ◽  
pp. 002199832110558
Author(s):  
Panayiotis Ketikis ◽  
Efthimios Damopoulos ◽  
Georgios Pilatos ◽  
Panagiotis Klonos ◽  
Apostolos Kyritsis ◽  
...  

The impact of the incorporation of graphene nanoplatelets (GN) on the properties of hydroxyl-terminated poly(dimethylsiloxane) (PDMS) matrices was investigated. The composites were prepared by solution mixing, using tetrahydrofuran (THF) as a solvent. Brookfield viscosimetry, implemented during the vulcanization process, revealed that GN increases the viscosity of the system, compared to pristine PDMS, proportionally to its concentration. X-ray diffraction patterns suggested an efficient dispersion of GN in the polysiloxane matrix. The D and G bands ratio (ID/IG) calculation, based on RAMAN spectra of GN/PDMS specimens, revealed more defects in graphene nanoplatelets when incorporated in the PDMS matrix. By differential scanning calorimetry (DSC), a marginal increase in crystallization, glass transition and melting temperatures of PDMS in GN/PDMS composites was observed. Improvement of the thermal stability of LMW PDMS composites, especially for higher GN concentrations (3 and 5 phr), was noticed by thermogravimetric analysis (TGA). Additionally, GN enhanced the tensile strength of composites, up to 73% for the 3 phr GN/LMW PDMS composite. A significant increase in the elongation at break was recorded, whereas no effect on the modulus of elasticity was recorded. The decrease in toluene-swelling, for the LMW PDMS matrix composites, was attributed to the increase in the tortuosity path because of the efficient dispersion of GN. A decrease in oxygen permeability of 55–65% and 44–58% was measured in membranes made of PDMS composites containing 0.5 phr and 1 phr GN, respectively. Dielectric relaxation spectroscopy (DRS) measurements recorded a significant increase in the conductivity of the higher graphene content composites.


2020 ◽  
Vol 989 ◽  
pp. 91-96
Author(s):  
Irina D. Zakir'yanova ◽  
Elena V. Nikolaeva ◽  
Iraida V. Korzun

The differential scanning calorimetry and the method of cooling curves are used to obtain data on liquidus temperatures of oxide-chloride systems Gd2O3 – K Cl - GdCl3. The solubility of gadolinium oxide in K Cl - GdCl3 melts has been studied. This information can be used for a developing process of the reduction of solid rare-earth oxides into their metals in molten salts.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1101 ◽  
Author(s):  
Przybysz ◽  
Hejna ◽  
Haponiuk ◽  
Formela

The modification of poly(ε-caprolactone) (PCL) was successfully conducted during reactive processing in the presence of dicumyl peroxide (DCP) or di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB). The peroxide initiators were applied in the various amounts of 0.5 or 1.0 pbw (part by weight) into the PCL matrix. The effects of the initiator type and its concentration on the structure and mechanical and thermal properties of PCL were investigated. To achieve a detailed and proper explication of this phenomenon, the decomposition and melting temperatures of DCP and BIB initiators were measured by differential scanning calorimetry. The conjecture of the branching or cross-linking of PCL structure via used peroxides was studied by gel fraction content measurement. Modification in the presence of BIB in PCL was found to effectively increase gel fraction. The result showed that the cross-linking of PCL started at a low content of BIB, while PCL modified by high DCP content was only partially cross-linked or branched. PCL branching and cross-linking were found to have a significant impact on the mechanical properties of PCL. However, the effect of used initiators on poly(ε-caprolactone) properties strongly depended on their structure and content. The obtained results indicated that, for the modification towards cross-linking/branching of PCL structure by using organic peroxides, the best mechanical properties were achieved for PCL modified by 0.5 pbw BIB or 1.0 pbw DCP, while the PCL modified by 1.0 pbw BIB possessed poor mechanical properties, as it was related to over cross-linking.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 251 ◽  
Author(s):  
Juli-Anna Dolyniuk ◽  
Justin Mark ◽  
Shannon Lee ◽  
Nhon Tran ◽  
Kirill Kovnir

The synthesis, structural characterization, and optical properties of the binary Zintl phases of α-EuP3, β-EuP3, EuP2, and α-K4P6 are reported in this study. These crystal structures demonstrate the versatility of P fragments with dimensionality varying from 0D (P6 rings in α-K4P6) to 1D chains (EuP2) to 2D layers (both EuP3). EuP2 is isostructural to previously reported SrP2 and BaP2 compounds. The thermal stabilities of the EuP2 and both EuP3 phases were determined using differential scanning calorimetry (DSC), with melting temperatures of 1086 K for the diphosphide and 1143 K for the triphosphides. Diffuse reflectance spectroscopy indicated that EuP2 is an indirect semiconductor with a direct bandgap of 1.12(5) eV and a smaller indirect one, less than 1 eV. Both EuP3 compounds had bandgaps smaller than 1 eV.


Sign in / Sign up

Export Citation Format

Share Document