scholarly journals Changes in Soluble-N in Forest and Pasture Soils after Repeated Applications of Tannins and Related Phenolic Compounds

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jonathan J. Halvorson ◽  
Javier M. Gonzalez ◽  
Ann E. Hagerman

Tannins (produced by plants) can reduce the solubility of soil-N. However, comparisons of tannins to related non-tannins on different land uses are limited. We extracted soluble-N from forest and pasture soils (0–5 cm) with repeated applications of water (Control) or solutions containing procyanidin from sorghum, catechin, tannic acid, β-1,2,3,4,6-penta-O-galloyl-D-glucose (PGG), gallic acid, or methyl gallate (10 mg g−1soil). After eight treatments, samples were rinsed with cool water (23°C) and incubated in hot water (16 hrs, 80°C). After each step, the quantity of soluble-N and extraction efficiency compared to the Control was determined. Tannins produced the greatest reductions of soluble-N with stronger effects on pasture soil. Little soluble-N was extracted with cool water but hot water released large amounts in patterns influenced by the previous treatments. The results of this study indicate hydrolyzable tannins like PGG reduce the solubility of labile soil-N more than condensed tannins like sorghum procyanidin (SOR) and suggest tannin effects will vary with land management. Because they rapidly reduce solubility of soil-N and can also affect soil microorganisms, tannins may have a role in managing nitrogen availability and retention in agricultural soils.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Víctor Camilo Pulido-Blanco ◽  
Elberth Hernando Pinzón-Sandoval ◽  
Carlos Felipe González-Chavarro ◽  
Pablo Antonio Serrano-Cely

AbstractThe larval stages of Carmenta theobromae Busck (1910) and Simplicivalva ampliophilobia Davis, Gentili-Poole and Mitter (2008) attack the subcortical zone and pith in guava trees, respectively, in the first productive nucleus of fruit trees in Colombia: Hoya del Río Suárez (HRS). The presence of pest insects has been reported in 98% of the farms sampled in HRS (n = 124), with up to 96 and 11 simultaneous larvae per tree, respectively. Although the aspects of the basic biology and life cycle of both pests have been resolved, there are no strategies for managing populations in the field. Therefore, the aim of this study was to evaluate different management alternatives under laboratory and field conditions in HRS. In laboratory conditions, a completely randomized design was used in two separate experiments, each with six treatments: T1: Spinosad (a mixture of Spinosad A and D); T2: S-1,2-di(ethoxycarbonyl) ethyl 0,0-dimethylphosphorodithioate (chemical control); T3: Lecanicillium lecanii; T4: Beauveria bassiana; T5: Mix of B. bassiana and B. brongniartii, and T6: distilled water (control). The number of dead larvae per replicate per treatment was evaluated (DL), with experimental units of five and three larvae, respectively. In the field, to the two best alternatives found for each pest in the laboratory, pruning and keeping the area around the plants free of weeds were added as cultural management, in two separate additional experiments, each with three larvae as experimental unit per treatment. For C. theobromae, the best laboratory alternatives were chemical control (DL: 3.78) and L. lecanii (DL: 2.33), followed without statistical differences by B. bassiana (DL: 1.67). In the field, the virulence of B. bassiana improved (DL: 3), and together with pruning and keeping the area around the plants clear of weeds (DL: 3), they stood out as the best alternatives. For S. ampliophilobia under laboratory conditions, the best alternatives were Spinosad (2.74) and chemical control (DL: 2.66), without significant difference. In the field, there were no statistical differences between the alternatives, except for the control. This statistical parity of cultural practices, and biological and chemical management is an argument in favor of the use of the former to the detriment of the third, especially when the harmful effects of the molecule S-1,2 di (ethoxycarbonyl) ethyl 0, 0-dimethyl phosphorodithioate have been proven in air, water and agricultural soils, in addition to its association with thyroid cancer in humans. This is a strong argument to favor the use of synergies of cultural and biological management methods framed in IPM, as opposed to the use of chemical agents whose harmful effects are strongly documented, and whose use is becoming increasingly prohibited.


2011 ◽  
Vol 291-294 ◽  
pp. 1339-1343
Author(s):  
Wen Bo Zhang ◽  
Hong Rui Li ◽  
Jun Tao ◽  
Bing Bing Dong

The research in this paper optimized the extraction technique of lentinan with ultrasonic assistant method on the basis of hot water extraction technique, and investigated the promoting function of ultrasound to polysaccharides extraction. Extraction condition was selected by means of orthogonal experimental design, four factors and three levels L9(34), after key elements were respectively chosen through single factor experiments. Comparison between optimal extraction parameters of two method, hot water extraction technique and ultrasonic assistant extraction technique, showed decreased extraction temperature and significantly shortened extraction time, which existed in the second means, improved the extraction efficiency. Lentinus edodes polysaccharide extracted with ultrasonic assistant technique, the extraction rate and polysaccharide content percentage increased 6.22% and 8.66% respectively, comparative to which extracted with hot water extraction technique.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 235 ◽  
Author(s):  
X. Y. Liu ◽  
M. Rezaei Rashti ◽  
M. Esfandbod ◽  
B. Powell ◽  
C. R. Chen

Liming has been widely used to decrease soil acidity, but its effects on soil nitrogen (N) availability and microbial processes in sugarcane fields are largely unknown. Adjacent sugarcane soils at 26 months after liming (26ML), 14 months after liming (14ML) and with no lime amendment (CK) in Bundaberg, Australia, were selected to investigate the effect of liming on soil N bioavailability and microbial activity in a long-term subtropical sugarcane cropping system. Liming in both 14ML and 26ML treatments significantly increased soil pH (by 1.2–1.4 units) and exchangeable Ca2+ (>2-fold) compared with the CK treatment. The lower concentrations of hot water extractable organic carbon (C) and total N and ammonium-N in the 14ML, compared with the CK and 26ML treatments, can be attributed to the absence of trash blanket placement in the former. Enhanced microbial immobilisation due to improved soil pH by liming (14ML and 26ML treatments) led to increased soil microbial biomass C and N, particularly in the presence of a trash blanket (26 ML treatment), but decreased soil respiration and metabolic quotient indicated that acidic stress conditions were alleviated in the liming treatments. Soil pH was the main factor governing soil enzyme activities, with an overall decrease in all enzyme activities in response to liming. Overall, liming and trash blanket practices improved sugarcane soil fertility. Further study is warranted to investigate the shifts in soil microbial community composition and the diversity and abundance of N-associated functional genes in response to liming in sugarcane fields.


2015 ◽  
Vol 12 (23) ◽  
pp. 7299-7313 ◽  
Author(s):  
J. van Lent ◽  
K. Hergoualc'h ◽  
L. V. Verchot

Abstract. Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (104 studies, 392 N2O and 111 NO case studies), we determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 90) and 1.7 ± 0.5 (n = 36) kg N ha−1 yr−1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better with the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3− / [NO3−+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not increase significantly overall as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability and WFPS were the main factors explaining changes in N2O emissions following LUC, therefore it is important that experimental designs monitor their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm plantation and soy cultivation).


2019 ◽  
Vol 316 (5) ◽  
pp. R535-R542 ◽  
Author(s):  
Tomomi Fujimoto ◽  
Bun Tsuji ◽  
Yosuke Sasaki ◽  
Kohei Dobashi ◽  
Yasuo Sengoku ◽  
...  

Hypothermia can occur during aquatic exercise despite production of significant amounts of heat by the active muscles. Because the characteristics of human thermoregulatory responses to cold during exercise have not been fully elucidated, we investigated the effect of low-intensity exercise on the shivering response to core cooling in cool water. Eight healthy young men (24 ± 3 yr) were cooled through cool water immersion while resting (rest trial) and during loadless pedaling on a water cycle ergometer (exercise trial). Before the cooling, body temperature was elevated by hot water immersion to clearly detect a core temperature at which shivering initiates. Throughout the cooling period, mean skin temperature remained around the water temperature (25°C) in both trials, whereas esophageal temperature (Tes) did not differ between the trials ( P > 0.05). The Tes at which oxygen uptake (V̇o2) rapidly increased, an index of the core temperature threshold for shivering, was lower during exercise than rest (36.2 ± 0.4°C vs. 36.5 ± 0.4°C, P < 0.05). The sensitivity of the shivering response, as indicated by the slope of the Tes-V̇o2 relation, did not differ between the trials (−441.3 ±177.4 ml·min−1·°C−1 vs. −411.8 ± 268.1 ml·min−1·°C−1, P > 0.05). The thermal sensation response to core cooling, assessed from the slope and intercept of the regression line relating Tes and thermal sensation, did not differ between the trials ( P > 0.05). These results suggest that the core temperature threshold for shivering is delayed during low-intensity exercise in cool water compared with rest although shivering sensitivity is unaffected.


2020 ◽  
Vol 71 (2) ◽  
pp. 213
Author(s):  
Xiaoying Liu ◽  
Robyn J. Watts ◽  
Julia A. Howitt ◽  
Nicole McCasker

Overbank floods in modified lowland rivers often inundate a mosaic of different land uses (e.g. forests, crops and pastures) on the floodplain. We used a glasshouse experiment to investigate dissolved organic carbon (DOC) and nutrient (TP, NH4+, NOx) releases, chemical oxygen demand (COD) and dissolved oxygen (DO) depletion in water following inundation of soil and vegetation from a lowland river floodplain in southern Australia. Six replicate samples of six intact soil and groundcover treatments were collected during summer; three from a forest (bare soil, wallaby grass and leaf litter) and three from an adjacent paddock (bare soil, wheat and ryegrass). Samples were placed in pots, inundated with river water over 16 days, and their leachates were compared with a river-water control. All vegetated groundcover treatments had significantly higher DOC and COD and significantly less DO at both Day 1 and Day 16 than did the soil-only treatments or the control. Leachates from paddock treatments were less coloured than those from forest treatments, despite having similar concentrations of DOC. Our findings imply that the inundation of any vegetation during summer floods can be a major source of DOC and a major contributor to DO depletion.


2020 ◽  
Vol 71 (2) ◽  
pp. 261 ◽  
Author(s):  
Xiaoying Liu ◽  
Robyn J. Watts ◽  
Julia A. Howitt ◽  
Nicole McCasker

Overbank floods in modified lowland rivers often inundate a mosaic of different land uses (e.g. forests, crops and pastures) on the floodplain. We used a glasshouse experiment to investigate dissolved organic carbon (DOC) and nutrient (TP, NH4+, NOx) releases, chemical oxygen demand (COD) and dissolved oxygen (DO) depletion in water following inundation of soil and vegetation from a lowland river floodplain in southern Australia. Six replicate samples of six intact soil and groundcover treatments were collected during summer; three from a forest (bare soil, wallaby grass and leaf litter) and three from an adjacent paddock (bare soil, wheat and ryegrass). Samples were placed in pots, inundated with river water over 16 days, and their leachates were compared with a river-water control. All vegetated groundcover treatments had significantly higher DOC and COD and significantly less DO at both Day 1 and Day 16 than did the soil-only treatments or the control. Leachates from paddock treatments were less coloured than those from forest treatments, despite having similar concentrations of DOC. Our findings imply that the inundation of any vegetation during summer floods can be a major source of DOC and a major contributor to DO depletion.


2019 ◽  
Vol 9 (21) ◽  
pp. 4481 ◽  
Author(s):  
Figueiredo ◽  
Coser ◽  
Moreira ◽  
Leão ◽  
Vale ◽  
...  

Biochar has been presented as a multifunctional material with short- and long-term agro-environmental benefits, including soil organic matter stabilization, improved nutrient cycling, and increased primary productivity. However, its turnover time, when applied to soil, varies greatly depending on feedstock and pyrolysis temperature. For sewage sludge-derived biochars, which have high N contents, there is still a major uncertainty regarding the influence of pyrolysis temperatures on soil carbon mineralization and its relationship to soil N availability. Sewage sludge and sewage sludge-derived biochars produced at 300 °C (BC300), 400 °C (BC400), and 500 °C (BC500) were added to an Oxisol in a short-term incubation experiment. Carbon mineralization and nitrogen availability (N-NH4+ and N-NO3−) were studied using a first-order model. BC300 and BC400 showed higher soil C mineralization rates and N-NH4+ contents, demonstrating their potential to be used for plant nutrition. Compared to the control, the cumulative C-CO2 emissions increased by 60–64% when biochars BC300 and BC400 were applied to soil. On the other hand, C-CO2 emissions decreased by 6% after the addition of BC500, indicating the predominance of recalcitrant compounds, which results in a lower supply of soil N-NH4+ (83.4 mg kg−1) in BC500, being 67% lower than BC300 (255.7 mg kg−1). Soil N availability was strongly influenced by total N, total C, C/N ratio, H, pore volume, and specific surface area in the biochars.


2011 ◽  
Vol 51 (No. 4) ◽  
pp. 165-172 ◽  
Author(s):  
R. Dufková ◽  
T. Kvítek ◽  
J. Voldřichová

Extensive management (absence of management) of unfertilized permanent grasslands was examined for five years from the aspect of its influence on soil chemical properties of horizon A in a floodplain locality of the Crystalline Complex, in relation to water regime regulation, reclamations and liming. These treatments: without mowing (0), one cut (1) and two cuts (2) per year were used at sites without drainage (WD), with drainage (D) and with drainage water retardation (R). These average values were measured at all sites and for all treatments: content of soil organic carbon C<sub>org</sub> 2.3&ndash;3.4%, combustible substances CS 12&ndash;15%, humic to fulvic acids ratio C<sub>HA</sub>/C<sub>FA</sub> 0.81&ndash;0.94, C/N 8&ndash;9, humification rate 0.6&ndash;0.7, exchange pH 3.9&ndash;5.1. All sites have deteriorated conditions for the activity of soil microorganisms (low pH). Determinations of the contents of organic carbon (C<sub>org</sub> by thermal combustion, water soluble and hot water soluble carbon, C<sub>HA</sub> and C<sub>FA</sub>), CS and total nitrogen indicated decreases as a result of the influence of factors (drainage, liming, mowing) supporting mineralization and the cycle of soil organic matter. Mowing improved humus quality


2019 ◽  
Vol 9 (17) ◽  
pp. 3514 ◽  
Author(s):  
Jenna Walsh ◽  
Joseph Sanford ◽  
Rebecca Larson

Biochar amendment to soil is a method used to mitigate losses of nitrogen leaching through agricultural soils. Multiple methods for extraction of nitrogen have been used, and recent studies have indicated that traditional soil extraction methods underestimate biochar nitrate. This study evaluated the nitrate extraction efficiency of a KCl extraction method under different temperature (20 and 50 °C) and duration (24 and 96 h) conditions. Increasing the duration of extraction from 24 to 96 h did not have a significant impact on extraction efficiency. However, increasing temperature resulted in nitrate extraction efficiencies above 90%. Rinsing the biochar once with deionized (DI) water following filtration after extraction increased the extraction efficiency significantly, but any subsequent rinses were not significant. This study recommends extracting nitrate from biochar using 2 M KCl at 50 °C for a period of 24 h with one additional rinse to increase nitrate recovery above 90%. However, future studies should evaluate this procedure for different types of biochar produced from alternative biomasses and at varying temperatures.


Sign in / Sign up

Export Citation Format

Share Document