scholarly journals Design Mixers to Minimize Effects of Erosion and Corrosion Erosion

2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Julian Fasano ◽  
Eric E. Janz ◽  
Kevin Myers

A thorough review of the major parameters that affect solid-liquid slurry wear on impellers and techniques for minimizing wear is presented. These major parameters include (i) chemical environment, (ii) hardness of solids, (iii) density of solids, (iv) percent solids, (v) shape of solids, (vi) fluid regime (turbulent, transitional, or laminar), (vii) hardness of the mixer's wetted parts, (viii) hydraulic efficiency of the impeller (kinetic energy dissipation rates near the impeller blades), (ix) impact velocity, and (x) impact frequency. Techniques for minimizing the wear on impellers cover the choice of impeller, size and speed of the impeller, alloy selection, and surface coating or coverings. An example is provided as well as an assessment of the approximate life improvement.

Author(s):  
Ragnar T. Igland ◽  
Hagbart S. Alsos ◽  
Stig Olav Kvarme

The safety of pipelines and subsea structures are key elements in subsea field developments. As part of the safety engineering, protection from dropped objects and third party impact actions is required. This article addresses this aspect. Dropped object from a platform or a vessel is one of the design scenarios. The fall-pattern of the object is essential for the impact velocity and corresponding energy, model of the path and the effects of hydrodynamic behavior is outlined. In lieu of accurate information, the design code use energy band for energy estimates and may give extremely conservative impact energy. The falling objects structural flexibility and properties are discussed and evaluated regarding the energy dissipation and possible damage of the pipeline. The pipeline combined response from global deflection and denting regarding impacts are investigated. Analysis and testing methods applied in pipeline design are presented. Focus is placed on the overall interaction between the impacting object, the deformed pipeline and energy dissipation by coating and soil. Typically, pipeline damage from design codes provides conservative cross sectional damage estimates. This is confirmed from both simplified and detailed FE analyses, as well as fullscale impact experiments performed by REINERTSEN AS. One of the main objectives promoted by the authors is the importance of both impact velocity and mass during impact, and not only the kinetic energy of the impact. The kinetic energy from a dropped object is unlikely to be fully dissipated as cross sectional deformation of the pipeline. Global deformations will be triggered, which implies that the dissipated energy going into local denting is reduced to a fractional value. The effect is more pronounced for small diameter pipelines than for pipelines with large diameter. This paper discusses the impact mechanics and seeks to estimate the fractional value by using simplified element analysis.


2012 ◽  
Vol 178-181 ◽  
pp. 371-375
Author(s):  
Y. L. Liu ◽  
Y. Zheng ◽  
P. Zhang ◽  
W.L. Wei

In this paper, the CFD approach is used to study the solid–liquid two-phase turbulent flow and sludge concentration distribution in a secondary sedimentation tank. By the simulation, the velocity and the turbulent kinetic energy and turbulent kinetic energy dissipation rate and solid distribution in a secondary sedimentation tank are obtained, which shows the simulation model is an effective method to investigate the flow patterns and their influence on the process inside the sedimentation vessel.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 157
Author(s):  
Duane Rosenberg ◽  
Annick Pouquet ◽  
Raffaele Marino

We study in this paper the correlation between the buoyancy flux, the efficiency of energy dissipation and the linear and nonlinear components of potential vorticity, PV, a point-wise invariant of the Boussinesq equations, contrasting the three identified regimes of rotating stratified turbulence, namely wave-dominated, wave–eddy interactions and eddy-dominated. After recalling some of the main novel features of these flows compared to homogeneous isotropic turbulence, we specifically analyze three direct numerical simulations in the absence of forcing and performed on grids of 10243 points, one in each of these physical regimes. We focus in particular on the link between the point-wise buoyancy flux and the amount of kinetic energy dissipation and of linear and nonlinear PV. For flows dominated by waves, we find that the highest joint probability is for minimal kinetic energy dissipation (compared to the buoyancy flux), low dissipation efficiency and low nonlinear PV, whereas for flows dominated by nonlinear eddies, the highest correlation between dissipation and buoyancy flux occurs for weak flux and high localized nonlinear PV. We also show that the nonlinear potential vorticity is strongly correlated with high dissipation efficiency in the turbulent regime, corresponding to intermittent events, as observed in the atmosphere and oceans.


2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


2019 ◽  
Vol 33 (07) ◽  
pp. 1950073
Author(s):  
Lei Huang ◽  
De-Yong Guan ◽  
Xin-Hong Qiang

Traffic flow dynamics and energy consumption differs under dissimilar weather conditions, while seldom investigations have been conducted with a cellular automata model. In this paper, the friction coefficient between ground and tire is considered as the quantitative label of weather, a dynamic safe gap based on friction coefficient to avoid rear-end crash is introduced. We developed a safer one-dimensional model to examine the kinetic energy consumption under different weathers. Numerical results show that previous models overestimated the kinetic energy consumption in medium density flow (density [Formula: see text]0.5). In medium flow, speed limit will not reduce energy consumption on rainy and snowy days in most cases, but is necessary for prevention of accidents. Inversely, the effect of speed control on energy consumption is obvious under extreme weather. Our work can promote a better understanding of traffic dynamics, reduce energy dissipation and be applied to real traffic management.


Sign in / Sign up

Export Citation Format

Share Document