scholarly journals Technical Barriers and Development of Cu Wirebonding in Nanoelectronics Device Packaging

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
C. L. Gan ◽  
E. K. Ng ◽  
B. L. Chan ◽  
U. Hashim ◽  
F. C. Classe

Bondpad cratering, Cu ball bond interface corrosion, IMD (intermetal dielectric) cracking, and uncontrolled post-wirebond staging are the key technical barriers in Cu wire development. This paper discusses the UHAST (unbiased HAST) reliability performance of Cu wire used in fine-pitch BGA package. In-depth failure analysis has been carried out to identify the failure mechanism under various assembly conditions. Obviously green mold compound, low-halogen substrate, optimized Cu bonding parameters, assembly staging time after wirebonding, and anneal baking after wirebonding are key success factors for Cu wire development in nanoelectronic packaging. Failure mechanisms of Cu ball bonds after UHAST test and CuAl IMC failure characteristics have been proposed and discussed in this paper.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
C. L. Gan ◽  
U. Hashim

Wearout reliability and high temperature storage life (HTSL) activation energy of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the influence of wire type on the wearout reliability performance of Au and PdCu wire used in fine pitch BGA package after HTSL stress at various aging temperatures. Failure analysis has been conducted to identify the failure mechanism after HTSL wearout conditions for Au and PdCu ball bonds. Apparent activation energies (Eaa) of both wire types are investigated after HTSL test at 150 °C, 175 °C and 200 °C aging temperatures. Arrhenius plot has been plotted for each ball bond types and the calculated Eaa of PdCu ball bond is 0.85 eV and 1.10 eV for Au ball bond in 110 nm semiconductor device. Obviously Au ball bond is identified with faster IMC formation rate with IMC Kirkendall voiding while PdCu wire exhibits equivalent wearout and or better wearout reliability margin compare to conventional Au wirebond. Lognormal plots have been established and its mean to failure (t50) have been discussed in this paper.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000298-000304 ◽  
Author(s):  
Di Erick Xu ◽  
Jimy Gomes ◽  
Michael Mayer ◽  
Rob Lyn ◽  
John Persic

The high price of Au has motivated many to look for alternative bonding wire materials in the field of microelectronics packaging. In the present study, the reliability performance of palladium coated silver (PCS) wire in high temperature storage test (HTST) is carried out using 18 μm diameter fine pitch PCS wire. Fine pitch ball bonds are made on Al metallization, with bonded ball diameter (BBD) of 32 ± 0.5 μm and ball height (BH) of 8 ± 0.5 μm. The aging temperature used in HTST is 170 °C and both shear and pull test are used to evaluate the aged ball bonds at regular time intervals. The shear force increases from 9.9 gf at 96 h to 12.5 gf at 192 h, and remains almost constant until 1344 h, and starts dropping gradually until 10.9 gf at 1848 h. The pad lift percentage recorded in pull test gradually drops from 90 % at 96 h to 20 % at 1008 h, and increases to 90 % at 1848 h. The chip side fractography after shear test indicates that the main failure modes are through pad at 96 h, through ball bond at 504 h, and half of both at 168 h, respectively. Cross-sectional images show that the thickness of the intermetallic compound (IMC) layer growth follows parabolic relationship and the rate constant is 0.10 ± 0.02 μm/h½. Gaps are observed along the periphery of the ball bond interface where no IMC is observed. The IMCs are located at the center of the ball bond interface, and the width is 16.0–19.3 μm at 96 h and 17.2–22.7 μm at 1344 h, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
C. L. Gan ◽  
E. K. Ng ◽  
B. L. Chan ◽  
F. C. Classe ◽  
T. Kwuanjai ◽  
...  

Wearout reliability and diffusion kinetics of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the HAST (with bias) and UHAST (unbiased HAST) wearout reliability performance of Au and PdCu wires used in fine pitch BGA packages. In-depth failure analysis has been carried out to identify the failure mechanism under various wearout conditions. Intermetallic compound (IMC) diffusion constants and apparent activation energies (Eaa) of both wire types were investigated after high temperature storage life test (HTSL). Au bonds were identified to have faster IMC formation, compared to slower IMC growth of PdCu. PdCu wire was found to exhibit equivalent or better wearout reliability margin compared to conventional Au wire bonds. Failure mechanisms of Au, Cu ball bonds post-HAST and UHAST tests are been proposed, and both Au and PdCu IMC diffusion kinetics and their characteristics are discussed in this paper.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000318-000324 ◽  
Author(s):  
Sarangapani Murali ◽  
Bayaras Abito Danila ◽  
Zhang Xi

Abstract The paper discusses on the reliability of coated and alloyed copper/silver ball bonds on both epoxy molded and unmolded conditions:Moisture resistance test using unmolded device at 130°C 85%RH (humidity chamber) revealed no ball lift failure until 96hours for the ball size of 1.65 times the diameter of wireCorrosion resistance test using unmolded device at room temperature by dripping (or soaking) dilute chlorine (Cl) solution revealed no ball lift failure for gold wires. Copper base wire bonds failed after 6min of storage while silver (Ag) base wire bonds showed a few bond lifts within 2min. This shows that Ag base wires are more sensitive to Cl environment than copper (Cu) base wiresA case study of epoxy molded device using green mold compound and four types of Cu and Ag base ball bonds passed on thermal ageing (HTS) at 175°C for 4000h and on +5V bHAST for 500h. The test response is by measuring electrical resistance in order not to reduce below 10% of contact resistance measured during time zero bonding○ Cross-section analysis of the samples showed intact bonding of Cu and Ag base ball bonds after 4000h of HTS○ The result shows when Cu and Ag base wire bonds molded with a good compatible green mold epoxy compound satisfy the automotive electronic council (AEC – Q006 & Q100 Rev-H, for Cu) requirements of 2X stress test with respect to electrical resistance measurementAnother case study of epoxy molded device revealed Cu and Ag base wire bonds pass 3000cycles of thermal cycling (−55°C to +150°C) without any neck/heel cracks and stitch lifts In addition, fine wires are baked at elevated temperature under vacuum or by purging nitrogen to find the quality of wire surface. As expected, Au, Cu and Ag base wires show clean surface. For palladium (Pd) coated Cu wire, a good Pd adhesion to Cu core surface without blisters is evident.


2000 ◽  
Vol 123 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Takashi Aihara ◽  
Shingo Ito ◽  
Hideaki Sasajima ◽  
Ken Oota

The market for BGA packages is expanding all over the world, owing to the ease of its mounting onto the PC boards. On the other hand, BGA packages possess certain shortcomings compared to QFPs. Anti-solder crack performance on Fine Pitch BGA (=FPBGA) and warpage on Mold Array Package-BGA(=MAP-BGA) are significant disadvantages. To improve the performance of BGA packages, we studied various combinations of materials used for BGA package including molding compounds, die attach pastes, and substrates.


Author(s):  
Younggun Han ◽  
Osamu Horiuchi ◽  
Shigehiro Hayashi ◽  
Kanta Nogita ◽  
Yoshihisa Katoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document