scholarly journals Enhancement of Lipid Extraction from Marine Microalga,ScenedesmusAssociated with High-Pressure Homogenization Process

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Seok-Cheol Cho ◽  
Woon-Yong Choi ◽  
Sung-Ho Oh ◽  
Choon-Geun Lee ◽  
Yong-Chang Seo ◽  
...  

Marine microalga,Scenedesmussp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v). Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Shihong Liu ◽  
Husam A. Abu Hajar ◽  
Guy Riefler ◽  
Ben J. Stuart

Microalgae are one of the most promising feedstocks for biodiesel production due to their high lipid content and easy farming. However, the extraction of lipids from microalgae is energy intensive and costly and involves the use of toxic organic solvents. Compared with organic solvent extraction, supercritical CO2(SCCO2) has demonstrated advantages through lower toxicity and no solvent-liquid separation. Due to the nonpolar nature of SCCO2, polar organic solvents such as methanol may need to be added as a modifier in order to increase the extraction ability of SCCO2. In this paper, pilot scale lipid extraction using SCCO2was studied on two microalgae species:Spirulinasp. andSchizochytriumsp. For each species, SCCO2extraction was conducted on 200 g of biomass for 6 h. Methanol was added as a cosolvent in the extraction process based on a volume ratio of 4%. The results showed that adding methanol in SCCO2increased the lipid extraction yield significantly for both species. Under an operating pressure of 4000 psi, the lipid extraction yields forSpirulinasp. andSchizochytriumsp. were increased by 80% and 72%, respectively. It was also found that a stepwise addition of methanol was more effective than a one-time addition. In comparison with Soxhlet extraction using methylene chloride/methanol (2:1, v/v), the methanol-SCCO2extraction demonstrated its high effectiveness for lipid extraction. In addition, the methanol-SCCO2system showed a high lipid extraction yield after increasing biomass loading fivefold, indicating good potential for scaling up this method. Finally, a kinetic study of the SCCO2extraction process was conducted, and the results showed that methanol concentration in SCCO2has the strongest influence on the lipid extraction yield.


2017 ◽  
Vol 753 ◽  
pp. 259-263
Author(s):  
Atsdawut Areesirisuk ◽  
Chiu Hsia Chiu ◽  
Tsair Bor Yen ◽  
Jia Hsin Guo

In this study, intracellular lipids of a novel oleaginous biomass of P. parantarctica were converted to biodiesel directly using simple acid catalyst methanolysis. The optimum condition of this method was investigated. Under optimum conditions (0.1 M H2SO4, 10 h reaction time, 65°C reaction temperature, and 1:20 (w/v) biomass-to-methanol ratio), the yield of crude biodiesel was 93.18 ± 2.09% based on total cellular lipids. The composition of crude biodiesel was C16:C18 fatty acid methyl esters (FAMEs) for 91.91%. Especially, the C18:1 methyl ester was the main FAME (47.10%). In addition, the result showed that this technique could produce the microbial biodiesel from biomass containing high free fatty acids (FFAs) without soap formation. The predicted cetane number and kinematic viscosity of biodiesel were characterized according to ASTM D6751 and EN 14214 standards. Our results indicated that this process produces a good quality biodiesel. Moreover, it can decrease the manufacturing costs of microbial biodiesel production from oleaginous yeast biomass without cell disruption and lipid extraction.


2017 ◽  
Vol 71 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Myung-Gyun Kim ◽  
Hyun-Wook Hwang ◽  
Antony Nzioka ◽  
Young-Ju Kim

In order to secure more effective lipid extraction method, this research investigated new lipid extraction method using laser with absorbent and sought its optimum operation control. In addition, this study compared lipid extraction efficiency and FAME conversion rate between laser extraction method at optimum condition and existing extraction method. Results from experiments for optimizing lipid extraction method using laser showed that the maximum extraction efficiency (81.8%) was attained when using laser with an output capacity of 75Wh/L. Extraction efficiency increased up to 90.8% when microwave treatment as pretreatment process was conducted. Addition of absorbents during lipid extraction process with laser showed higher extraction efficiency than laser and chemical method. It was also found that laser extraction method with absorbent had higher total fatty acid content (853.7 mg/g oil) in extracted lipid than chemical extraction method (825.4 mg/g oil). Furthermore, it had the highest FAME conversion rate (94.2%).


2018 ◽  
Vol 154 ◽  
pp. 01023 ◽  
Author(s):  
Martomo Setyawan ◽  
Panut Mulyono ◽  
Sutijan ◽  
Arief Budiman

Biodiesel production from microalgae is one of the solution of the future energy problem, but its production cost is still high. One of the costly stages of this process is the lipid extraction process. It can be reduced by microalgae cell disruption. One of the mechanical method to cell disruption with the lowest energy requirement is hydrodynamic cavitation. This aim of this study is to evaluate the distribution coefficient and the mass transfer coefficient value of lipid extraction of Nannochloropsis sp. assisted by hydrodynamic cavitation and compare with conventional extraction. The hydrodynamic cavitation extraction was done at 34 °C, 1 atm. The conventional extraction was done at 34 °C, 1 atm with stirring speed 260 and 1000 rpm. The experimental result shows that the distribution coefficient dependent on the temperature with the values for 50, 44, 38 and 34 °C were 0.502, 0.394, 0.349, and 0.314 respectively. And it was according to Van’ Hoff equation with the values of ΔH° was 20.718 kJ/mol and ΔS° was 58.05 J/mol/K. The hydrodynamic cavitation extraction was faster than conventional. The mass transfer coefficient values for hydrodynamic cavitation, conventional 260 rpm and 1000 rpm were 7.373, 0.534 and 0.121 1/s respectively.


2018 ◽  
Vol 18 (1) ◽  
pp. 10-15
Author(s):  
Wang Yi-Wei ◽  
He Yong-Zhao ◽  
An Feng-Ping ◽  
Huang Qun ◽  
Zeng Feng ◽  
...  

In this study, Chinese yam starch-water suspension (8%) were subjected to high-pressure homogenization (HPH) at 100 MPa for increasing cycle numbers, and its effect of on the physicochemical properties of the starch was investigated. Results of the polarizing microscope observations showed that the starch granules were disrupted (i.e. greater breakdown value) after HPH treatment, followed by a decrease in cross polarization. After three HPH cycles, the crystallinity of starch decreased, while the crystal type remained unaltered. Meanwhile, the contents of rapidly digestible starch and slowly digestible starch were increased. On the contrary, resistant starch content was decreased. Our results indicate that HPH treatment resulted in reduction of starch crystallinity and increase of starch digestibility.


2009 ◽  
Vol 38 (9) ◽  
pp. 1243-1252 ◽  
Author(s):  
Myoung-Hoon Jeong ◽  
Seung-Seop Kim ◽  
Ji-Hye Ha ◽  
Ling Jin ◽  
Hak-Ju Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document