scholarly journals The Role of Deubiquitinating Enzymes in Synaptic Function and Nervous System Diseases

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jennifer R. Kowalski ◽  
Peter Juo

Posttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs). The balance of activity of these enzymes determines the localization, function, and stability of target proteins. While some DUBs counter the action of specific ubiquitin ligases by removing ubiquitin and editing ubiquitin chains, other DUBs function more generally to maintain the cellular pool of free ubiquitin monomers. The importance of DUB function at the synapse is underscored by the association of specific mutations in DUB genes with several neurological disorders. Over the last decade, although much research has led to the identification and characterization of many ubiquitin ligases at the synapse, our knowledge of the relevant DUBs that act at the synapse has lagged. This review is focused on highlighting our current understanding of DUBs that regulate synaptic function and the diseases that result from dysfunction of these DUBs.

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yuqin Ye ◽  
Hongyu Xu ◽  
Xinhong Su ◽  
Xiaosheng He

Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases.


2020 ◽  
Author(s):  
Sendi Mejia ◽  
Suhani Shah ◽  
Yara Abdelsalam ◽  
Ali Nimra ◽  
Munzir Bhatt ◽  
...  

Abstract In this paper, we studied the organization and function of TUBBY Transcription Factor gene family in maize. Initially, using comparative approach, we discovered the Arabidopsis thaliana orthologs in Zea mays. We found in total 13 genes, 12 of which are orthologs and a unique paralog that exhibits the highest activity in maize. We studied the role of TUBBY gene family across different developmental stages using existing expression data, and discovered the binding motifs present in the promoter region of the genes.


Biochemistry ◽  
2005 ◽  
Vol 44 (30) ◽  
pp. 10339-10348 ◽  
Author(s):  
Stephen J. Brokx ◽  
Richard A. Rothery ◽  
Guijin Zhang ◽  
Derek P. Ng ◽  
Joel H. Weiner

2010 ◽  
Vol 97 (1) ◽  
pp. S70-S71
Author(s):  
Busser Benoît ◽  
Lucie Sancey ◽  
Véronique Josserand ◽  
Saadi Khochbin ◽  
Jean-Luc Coll ◽  
...  

2006 ◽  
Vol 50 (6) ◽  
pp. 1973-1981 ◽  
Author(s):  
Magdalena Stoczko ◽  
Jean-Marie Frère ◽  
Gian Maria Rossolini ◽  
Jean-Denis Docquier

ABSTRACT The diffusion of metallo-β-lactamases (MBLs) among clinically important human pathogens represents a therapeutic issue of increasing importance. However, the origin of these resistance determinants is largely unknown, although an important number of proteins belonging to the MBL superfamily have been identified in microbial genomes. In this work, we analyzed the distribution and function of genes encoding MBL-like proteins in the class Rhizobiales. Among 12 released complete genomes of members of the class Rhizobiales, a total of 57 open reading frames (ORFs) were found to have the MBL conserved motif and identity scores with MBLs ranging from 8 to 40%. On the basis of the best identity scores with known MBLs, four ORFs were cloned into Escherichia coli for heterologous expression. Among their products, one (blr6230) encoded by the Bradyrhizobium japonicum USDA110 genome, named BJP-1, hydrolyzed β-lactams when expressed in E. coli. BJP-1 enzyme is most closely related to the CAU-1 enzyme from Caulobacter vibrioides (40% amino acid sequence identity), a member of subclass B3 MBLs. A kinetic analysis revealed that BJP-1 efficiently hydrolyzed most β-lactam substrates, except aztreonam, ticarcillin, and temocillin, with the highest catalytic efficiency measured with meropenem. Compared to other MBLs, BJP-1 was less sensitive to inactivation by chelating agents.


2014 ◽  
Vol 204 (7) ◽  
pp. 1087-1098 ◽  
Author(s):  
Zu-Hang Sheng

Mitochondria are essential organelles for neuronal growth, survival, and function. Neurons use specialized mechanisms to drive mitochondria transport and to anchor them in axons and at synapses. Stationary mitochondria buffer intracellular Ca2+ and serve as a local energy source by supplying ATP. The balance between motile and stationary mitochondria responds quickly to changes in axonal and synaptic physiology. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Recent work has provided new insight in the regulation of microtubule-based mitochondrial trafficking and anchoring, and on how mitochondrial motility influences neuron growth, synaptic function, and mitophagy.


Open Biology ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 160034 ◽  
Author(s):  
Dennis Klug ◽  
Gunnar R. Mair ◽  
Friedrich Frischknecht ◽  
Ross G. Douglas

Myzozoans (which include dinoflagellates, chromerids and apicomplexans) display notable divergence from their ciliate sister group, including a reduced mitochondrial genome and divergent metabolic processes. The factors contributing to these divergent processes are still poorly understood and could serve as potential drug targets in disease-causing protists. Here, we report the identification and characterization of a small mitochondrial protein from the rodent-infecting apicomplexan parasite Plasmodium berghei that is essential for development in its mosquito host. Parasites lacking the gene mitochondrial protein ookinete developmental defect ( mpodd ) showed malformed parasites that were unable to transmit to mosquitoes. Knockout parasites displayed reduced mitochondrial mass without affecting organelle integrity, indicating no role of the protein in mitochondrial biogenesis or morphology maintenance but a likely role in mitochondrial import or metabolism. Using genetic complementation experiments, we identified a previously unrecognized Plasmodium falciparum homologue that can rescue the mpodd(−) phenotype, thereby showing that the gene is functionally conserved. As far as can be detected, mpodd is found in myzozoans, has homologues in the phylum Apicomplexa and appears to have arisen in free-living dinoflagellates. This suggests that the MPODD protein has a conserved mitochondrial role that is important for myzozoans. While previous studies identified a number of essential proteins which are generally highly conserved evolutionarily, our study identifies, for the first time, a non-canonical protein fulfilling a crucial function in the mitochondrion during parasite transmission.


2000 ◽  
Vol 44 (6) ◽  
pp. 1745-1748 ◽  
Author(s):  
Genshi Zhao ◽  
Timothy I. Meier ◽  
Joann Hoskins ◽  
Kelly A. McAllister

ABSTRACT To further understand the role of penicillin-binding protein 2a (PBP 2a) of Streptococcus pneumoniae in penicillin resistance, we confirmed the identity of the protein as PBP 2a. The PBP 2a protein migrated electrophoretically to a position corresponding to that of PBP 2x, PBP 2a, and PBP 2b of S. pneumoniae and was absent in a pbp2ainsertional mutant of S. pneumoniae. We found that the affinities of PBP 2a for penicillins were lower than for cephalosporins and a carbapenem. When compared with other S. pneumoniae PBPs, PBP 2a exhibited lower affinities for β-lactam antibiotics, especially penicillins. Therefore, PBP 2a is a low-affinity PBP for β-lactam antibiotics in S. pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document