scholarly journals Hypoglycemic Activity and Antioxidative Stress of Extracts and Corymbiferin fromSwertia bimaculata In VitroandIn Vivo

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhaoxia Liu ◽  
Luosheng Wan ◽  
Yuedong Yue ◽  
Zuoqi Xiao ◽  
Yutang Zhang ◽  
...  

The present study was to investigate the anti-diabetic activities ofSwertia bimaculata. Based on the glucose consumption ofS. bimaculataextractsand different fractions (petroleum, dichloromethane, ethyl acetate,n-butanol and water extracts) in 3T3-L1 adipocyte assay, ethanol (ETH) and dichloromethane (DTH) extracts had the most effective potency. Furthermore, ETH, DTH and corymbiferin (the most abundant component of DTH) were evaluated for anti-diabetic effects in high fat and sucrose fed combined with low dose streptozocin induced diabetic rats. DTH and corymbiferin displayed remarkable anti-diabetic activities. The fasting blood glucose levels were significantly decreased, while the serum insulin levels were obviously increased. The oral glucose tolerance was also improved. The lowed serum total cholesterol, low density lipoprotein (LDL) and triglyceride levels and increased ratio of HDL (high density lipoprotein)/LDL were observed. The insulin sensitivity was improved on the basis of increased expressions of insulin-receptor substrate-2, phosphatidylinositol 3-kinase and Ser/Thr kinase AKT2. And also DTH and corymbiferin improved antioxidant capacity and carbohydrate metabolism in diabetic rats, along with the improvement of histopathology of livers and pancreaticβcells. Corymbiferin was one of active constituents, responsible for anti-diabetic properties. Therefore,S. bimaculatacould be considered as an alternative agent against diabetes mellitus.

2013 ◽  
Vol 12 (5) ◽  
pp. 29-33
Author(s):  
S. A. Matveeva

Aim.To study the associations between blood lipid profile and blood glucose levels in men with coronary heart disease (CHD), stable effort angina (SEA), metabolic syndrome (MS), and Type 2 diabetes mellitus (DM-2).Material and methods.The study included 82 men (mean age 50,5±0,9 years) with CHD, Functional Class I–III SEA, MS, and DM-2. The following lipid profile parameters were assessed: total cholesterol (TCH), triglycerides (TG), low-density lipoprotein cholesterol (LDL–CH), very low-density lipoprotein cholesterol (VLDL–CH), high-density lipoprotein cholesterol (HDL–CH), atherogenic index (AI), and triglyceride index (TGI), together with fasting blood glucose.Results.There were positive (direct) associations between higher levels (>90th percentile) of lipid profile parameters (TCH, TG, LDL–CH, VLDL– CH, HDL–CH, AI, TGI) and blood glucose, as well as between lower levels (≤10th percentile) of lipid profile parameters (TCH, TG, LDL–CH, VLDL– CH, AI, TGI) and blood glucose. At the same time, there were negative (inverse) associations between lower lipid levels (≤10th percentile of TCH, TG, LDL–CH, VLDL–CH, HDL–CH, AI, TGI) and higher glucose levels (>90th percentile), as well as between higher lipid levels (>90th percentile of TCH, TG, LDL–CH, VLDL–CH, HDL–CH, AI, TGI) and lower glucose levels (≤10th percentile).Conclusion.Dyslipidemia and hyperglycemia demonstrate synergetic proatherogenic effects in patients with CHD, SEA, MS, and DM-2, as suggested by significant heterogeneous (direct and inverse) associations between lipid profile parameters and fasting blood glucose. The results obtained provide an opportunity for the assessment of risk levels, prognosis, and need for pharmacological prevention and treatment in patients with combined cardiovascular pathology. 


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Hui-Yu Huang ◽  
Mallikarjuna Korivi ◽  
Ying-Ying Chaing ◽  
Ting-Yi Chien ◽  
Ying-Chieh Tsai

Pleurotus tuber-regiumcontains polysaccharides that are responsible for pharmacological actions, and medicinal effects of these polysaccharides have not yet been studied in diabetic rats. We examined the antidiabetic, antihyperlipidemic, and antioxidant properties ofP. tuber-regiumpolysaccharides in experimental diabetic rats. Forty rats were equally assigned as diabetic high-fat (DHF) diet and polysaccharides treated DHF groups (DHF+1P, DHF+2P, and DHF+3P, 20 mg/kg bodyweight/8-week). Diabetes was induced by chronic low-dose streptozotocin injections and a high-fat diet to mimic type 2 diabetes. Polysaccharides (1P, 2P, and 3P) were extracted from three different strains ofP. tuber-regium. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels substantially decreased, while serum insulin levels were restored by polysaccharides treatment compared to DHF. Furthermore, plasma total cholesterol, triglycerides, and low-density lipoprotein levels were significantly(P<0.01)lower in polysaccharide groups. High-density lipoprotein levels were attenuated with polysaccharides against diabetes condition. Polysaccharides inhibited(P<0.01)the lipid peroxidation index (malondialdehyde), and restored superoxide dismutase and glutathione peroxidase activities in the liver of diabetic rats. The antihyperglycemic property of polysaccharides perhaps boosts the antioxidant system that attenuates oxidative stress. We emphasize thatP. tuber-regiumpolysaccharides can be considered as an alternative medicine to treat hyperglycemia and oxidative stress in diabetic rats.


2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2093720
Author(s):  
Cuilan An ◽  
Lingling Wang ◽  
Yongli Liu ◽  
Emmanuel Ayobami Makinde ◽  
Huilian Li ◽  
...  

The current study aimed to investigate the therapeutic effects of 5,7-dihydroxy-6-oxoheptadecanoic acid (DHA) from Tiliacora triandra on rat models of type 2 diabetes mellitus (T2DM). T2DM was induced with a combination of high-fat diet/streptozotocin (HFD/STZ), and diabetic rats were treated with DHA (25 mg/kg) for 30 days. The body weight, fasting blood glucose (FBG), serum, and liver biochemical parameters, as well as histological evaluations of the liver and pancreas, were evaluated. Diabetic rats displayed a significant increase in FBG, serum lipid profiles (triglycerides, total cholesterol, and low-density lipoprotein cholesterol), liver function enzymes (aspartate transaminase, alkaline phosphatase, and alanine transaminase), creatinine, liver malondialdehyde (MDA), and myeloperoxidase (MPO) contents. Furthermore, insulin level and liver antioxidant enzyme activities (catalase [CAT], superoxide dismutase [SOD], and glutathione peroxidase [GSH-Px]) were significantly reduced in the diabetic rats. Whereas, treatment with DHA significantly reduced FBG, serum lipids, liver function enzymes, serum creatinine, liver MDA, and MPO contents. In addition, treatment with DHA significantly increased serum insulin level and liver SOD, CAT, and GSH-Px activities. In addition, DHA alleviated histopathological changes in the pancreas and liver caused by T2DM. These results portray the antidiabetic and antioxidative properties of DHA and can be considered as a potential treatment for T2DM.


2016 ◽  
Vol 8 (4) ◽  
pp. 408-413
Author(s):  
Patrick Emeka ABA

The current study investigated the ameliorative effects of combined therapy of glibenclamide and G. latifolium (GL) on several biochemical parameters of alloxaized Wistar rats. Thirty adult male Wistar rats assigned into 5 groups of 6 rats each were used for the study. Groups 2-5 were intraperitoneally injected with 160 mg/kg of alloxan monohydrate and upon establishment of diabetes (Fasting Blood Glucose (FBG) ≥ 126 mg/dl) were treated with 10 ml/kg distilled water (DW), 2 mg/kg glibenclamide, 200 mg/kg GL and 2 mg/kg glibenclamide and 200 mg/kg GL respectively. Rats in group 1 were not made diabetic and served as normal control. All the treatments were realized through daily oral route using gastric tube, for 21 days. Results indicated that the treatment of diabetic rats with a combination of glibenclamide and GL significantly reduced the elevated glucose levels, cholesterol, triacylglycerol, low density lipoprotein and malondialdehyde levels, along with increases in the high density lipoprotein, glutathione values and catalase activities, when compared to diabetic untreated group. It was concluded that the combined therapy of glibenclamide and GL showed superior antihyperglycemic, hypolipidaemic and antioxidant effects compared to either of them used alone.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Meng Zhao ◽  
Jianpin Qin ◽  
Wenting Shen ◽  
Aiping Wu

This study was aimed at examining the effect and underlying mechanisms of bilobalide (BB) on hepatic injury in streptozotocin- (STZ-) induced diabetes mellitus (DM) in immature rats. Immature rats (one day old) were randomly divided into five groups: group I, control nondiabetic rats; group II, STZ-induced, untreated diabetic rats; groups III/IV/V, STZ-induced and BB-treated diabetic rats, which were intraperitoneally injected with BB (2.5 mg/kg, 5 mg/kg, or 10 mg/kg) after 3 days followed by STZ treatment. We observed that BB improved the histopathological changes and maintained normal glucose metabolism, blood lipid, and liver function indicators, such as fasting blood glucose, obesity index, HbA1c, HOMA-IR, fast serum insulin, adiponectin, total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), aspartate transaminase (AST), and alanine transaminase (ALT) in STZ-induced DM in immature rats by a biochemical analyzer or ELISA. Meanwhile, Western blot analysis showed that in STZ-induced DM immature rats, BB decreased the expression of apoptosis-related proteins Bax, cleaved caspase-3, and cleaved caspase-9 while enhancing the Bcl-2 expression; BB downregulated the expression of ACC related to fat anabolism, while upregulating the expression of CPT-1 related to fat catabolism. Strikingly, treatment with BB significantly increased the expression of AMPKα1 as well as inhibited HMGB1, TLR4, and p-P65 expression in hepatic tissues of immature DM rats. AMPK inhibitor (compound C, CC) cotreated with BB undermined the protective effect of BB on the liver injury. The results of the present study suggested BB may have a significant role in alleviating liver damage in the STZ-induced immature DM rats.


2018 ◽  
Vol 8 (6-s) ◽  
pp. 57-62
Author(s):  
Nikhil Khurana ◽  
Pankaj Sharma ◽  
Sunita Bhagat ◽  
Suman Bala Sharma

4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid which is a succinamic acid derivative has been synthesized in 3 step reaction with malic acid. Its structure confirmation was done by various techniques like 1H NMR, 13C NMR, & HRMS and is recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. In the present study, the effect of 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid on plasma glucose, serum insulin, serum lipid profile and lipid peroxidation in streptozotocin–nicotinamide induced type 2 diabetic model was investigated.  4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid was administered orally (20 mg/kg b.w.) to streptozotocin + nicotinamide (STZ + NAD) induced diabetic rats for 28 days. A significant increase in fasting blood glucose levels, HbA1c levels, Serum lipid profile (TG & TC) and in  the levels of Malonaldialdehyde (MDA, end product of lipid peroxidation) was observed in STZ +NAD diabetic rats whereas the levels of high density lipoprotein-cholesterol (HDL-C) and serum insulin levels were significantly decreased  in STZ + NAD induced diabetic rats The effect of 4-((benzyloxy)amino)-2-hydroxy-4-oxobutanoic acid was compared with glibenclamide, a reference drug. Treatment with 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid and glibenclamide resulted in a significant reduction of fasting blood glucose levels with increase in plasma insulin levels in diabetic treated rats. 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid also resulted in a significant improvement in serum lipids and lipid peroxidation products. Our results suggest the potential role of 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid in the management of type-2 diabetes mellitus experimental rats. Keywords: 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid, dyslipidemia, streptozotocin induced diabetes, lipid peroxidation


2018 ◽  
Vol 30 (2) ◽  
pp. 239-244
Author(s):  
Godwin C. Akuodor ◽  
Linus K. Eban ◽  
Gloria Ahunna Ajoku ◽  
Ndubuisi N. Nwobodo ◽  
Joseph L. Akpan ◽  
...  

Abstract Background Salacial lehmbachii stem bark is used traditionally for the treatment of diabetes mellitus and its associated complications. Treatment of diabetes is necessary to reduce these complications. Methods In this study, the antidiabetic and antihyperlipidemic potential of S. lehmbachii ethanol stem bark extract was evaluated in alloxan-induced diabetic rats at a dose of 100 mg/kg, 200 mg/kg, and 400 mg/kg p.o. daily for 21 days. Blood glucose levels, serum total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein (VLDL) were assessed in the animals. Results Treatment of alloxan-induced diabetic rats with S. lehmbachii stem bark extract showed significant (p<0.01) reduction in blood glucose levels when compared with diabetic control. The elevated levels of serum cholesterol, triglycerides, LDL, and VLDL were significantly (p<0.01) reduced by S. lehmbachii stem bark extract, while the level of HDL significantly (p<0.01) increased. Conclusions The results obtained suggest that S. lehmbachii stem bark extract has the potential to treat diabetes condition and hyperlipidemic disorders.


2020 ◽  
Vol 10 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Morad Hebi ◽  
Mohamed Eddouks

Background: Corrigiola telephiifolia Pourr, is a perennial species, woody distributed throughout the north of Africa. This plant is used in traditional Mediterranean preparations and has many traditional uses especially treatment of diabetes. Aim/Methods: The current research was carried out to evaluate the antidiabetic effect of Aerial Parts of Aqueous Extract (APAE) of Corrigiola telephiifolia (C. telephiifolia) on both normal and streptozotocin (STZ)-induced diabetic rats treated at a dose of 5 mg/kg for fifteen days. Additionally, the histopathological changes in the liver, morphometric analysis, Oral Glucose Tolerance Test (OGTT) in normal rats and preliminary phytochemical screening for various components were realized. Results: Single oral administration of the APAE of C. telephiifolia (5mg/kg) showed no significant change in glycaemia of normal and STZ-induced diabetic rats. In contrast, repeated oral administration of C. telephiifolia reduced blood glucose levels from 4.11 ± 0.10 mmol/L to 3.16 ± 0.16 mmol/L (p<0.01) 15 days after administration in normal rats. Furthermore, blood glucose levels decreased from 17.84 ± 1.75mmol/L to 1.93 ± 0.33 mmol/L (p<0.0001) in STZ diabetic rats after fifteen days of treatment. According to the oral glucose tolerance test, C. telephiifolia (5 mg/kg) was shown to prevent significantly the increase in blood glucose levels in normal treated rats 30 min after glucose administration when compared to the control group. Also, the liver architecture of diabetic rats treated by C. telephiifolia was improved when compared with the liver architecture of untreated diabetic rats. Concerning the preliminary phytochemical screening of C. telephiifolia, several compounds have been found such as polyphenols, flavonoids, saponins, mucilage and terpenoids. Conclusion: The results show that the aqueous extract of C. telephiifolia possesses significant antihyperglycemic activity.


2018 ◽  
Vol 6 (8) ◽  
pp. 1354-1358 ◽  
Author(s):  
Maged A. El Wakeel ◽  
Ghada M. El-Kassas ◽  
Alyaa H. Kamhawy ◽  
Essam M. Galal ◽  
Maysa S. Nassar ◽  
...  

BACKGROUND: The rapidly increasing prevalence of childhood obesity became a major burden on health worldwide, giving an alarm to clinicians and researchers. Adipocytes act as an active endocrine organ by releasing plenty of bioactive mediators (adipokines) that play a major role in regulating metabolic processes. Apelin is a recently identified adipokine that is expressed in adipocytes.AIM: The current work aimed to uncover the relation between serum apelin and childhood obesity and its related complications as hypertension and hyperglycemiaMETHOD: A group of 50 obese and 31 non-obese; sex- and age-matched children were enrolled in our study with a mean age of (9.5 ± 2.1) and (8.7 ± 1.3) respectively. Anthropometric measurements, blood pressure, were assessed in all studied participants, we also determined the lipid profile, serum insulin, fasting blood glucose (FBG) level, HOMA-IR and serum apelin.RESULTS: Obese children had higher levels of HbA1c, FBG, serum insulin, HOMA-IR, total cholesterol, triglycerides, low-density lipoprotein (LDL) and diastolic blood pressure (DBP Z-score); compared to controls (all P < 0.05). Apelin was significantly higher in obese children versus controls and correlated positively with BMI Z-Score (P = 0.008), DBP Z-Score (P = 0.02), cholesterol, TG (both P = 0.02), serum insulin (P = 0.003), FBG and HOMA-IR (both P = 0.001). Linear regression analysis showed that FBG was the most effective factor in predicting the level of serum apelin (P = 0.04).CONCLUSION: This work supports the hypothesis that apelin may have a crucial role in the pathogenesis of health hazards related to obesity in children including insulin resistance, hypertension and a higher risk of occurrence of metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document