scholarly journals A Mathematical Model with Pulse Effect for Three Populations of the Giant Panda and Two Kinds of Bamboo

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Xiang-yun Shi ◽  
Guo-hua Song

A mathematical model for the relationship between the populations of giant pandas and two kinds of bamboo is established. We use the impulsive perturbations to take into account the effect of a sudden collapse of bamboo as a food source. We show that this system is uniformly bounded. Using the Floquet theory and comparison techniques of impulsive equations, we find conditions for the local and global stabilities of the giant panda-free periodic solution. Moreover, we obtain sufficient conditions for the system to be permanent. The results provide a theoretical basis for giant panda habitat protection.

2016 ◽  
Vol 09 (04) ◽  
pp. 1650062
Author(s):  
Meng Zhang ◽  
Guohua Song

It has been certificated that corridors can help giant pandas to keep their habitat from fragmenting. However there are still losses during the process of moving along corridors. In this study, a mathematical model with Allee effect is carried out to describe the diffusion of giant pandas between n patches. Some criteria are obtained to keep the system persisting. It is proved that the system has a unique positive [Formula: see text]-periodic solution which is globally asymptotically stable. The ecological meanings of these findings are discussed following the results. And some numerical simulations in the Qinling Mountain giant panda nature reservation area are also presented in the end.


2010 ◽  
Vol 37 (6) ◽  
pp. 531 ◽  
Author(s):  
M. Gong ◽  
Z. Yang ◽  
W. Yang ◽  
Y. Song

Context. Giant pandas (Ailuropoda melanoleuca) are restricted to six mountain ranges at the edge of the Tibetan Plateau. One of these ranges, the Qinling Mountains, contains the highest density of giant pandas and is home to ~20% of those remaining in the wild. Commercial logging and other developments have resulted in habitat fragmentation, and an efficient and powerful conservation network is now needed for the species in this area. Aims. This study sought to assess giant panda habitat and estimate the carrying capacity of this reserve network. Our goal was to improve the function and carrying capacity of the reserve network and facilitate population growth and gene flow among subpopulations of giant pandas. Methods. We use habitat suitability models to assess the efficacy of conservation networks. With estimation of carrying capacity by home range, we can reveal issues facing reserves and populations of endangered species they contain. Here, we define key habitat, linkages, corridors and overall connectivity and then use habitat network modelling and spatial analyses to design a conservation landscape for giant pandas across their Qinling Mountains stronghold. Key results. We found that 91% of giant panda sightings were in suitable or marginally suitable habitat. The total area of giant panda habitat present in the Qinling Mountains is ~1600 km2 fragmented across four key habitat blocks by national roads or other human activity. The current nature reserve network encompasses 71% of available suitable habitat and 62% of available marginal habitat, meaning a significant proportion of panda habitat remains outside the current conservation network. We found that giant panda reserves across this region are not equal in their carrying capacity; some reserves contain an overabundance of giant pandas and the wellbeing of these populations are in doubt. Conclusions. Our results highlight the potential risk of high densities and bamboo flowering events to the safety of giant pandas. With poor population size and heavy isolation, small populations will not persist without translocation. Implication. Redrawing the reserve network to correct localised problems may improve the function of the giant panda protection system, build capacity in the reserve network, and decrease human–wildlife conflict. We propose a new reserve and adjustment of the borders and region for three reserves.


2014 ◽  
Vol 64 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Huaiqing Deng ◽  
Xuelin Jin ◽  
Defu Hu ◽  
Dingzhen Liu

Wild animals are affected by growing human interference in their habitats and inevitably react internally to such stimuli. This study explores inherent physiological parameters to assess the effect of human interference on giant pandas in their wild habitat. Ninety-one fecal samples were collected within four nature reserves on Qinling Mountain. Fecal cortisol determinations were performed by radioimmunoassay. We categorized the intensity of local human disturbance and tested for correlations between the intensity of human disturbance and fecal cortisol metabolite levels. The results show a significant positive correlation between giant panda fecal cortisol metabolite levels and the degree of disturbance in their habitat. This study is the first to use a non-invasive monitoring method to analyze wild giant panda habitat disturbance, and demonstrates that cortisol metabolite levels in panda dung can objectively reflect the degree of panda habitat disturbance. The results provide a relatively objective means and method with which to evaluate the quality of wild giant panda habitat. This study highlights the need to monitor the effects of human disturbance on wildlife and to implement new policies in the management of nature reserves.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2469
Author(s):  
Xiaoyu Chen ◽  
Xiaorong Wang ◽  
Junqing Li ◽  
Dongwei Kang

Habitat suitability provides essential information for the management of protected species. However, studies that jointly consider the impacts of human disturbance and sympatric animals in habitat suitability assessments of giant panda are limited, which may overestimate the habitat status. To address this issue, we evaluated the habitat suitability of giant panda in Wanglang Nature Reserve by simultaneously investigating livestock grazing and sympatric takin via MAXENT, a new attempt at the assessment of the habitat suitability of giant panda. We focused on describing the habitat suitability of giant panda and determining the habitat overlap between livestock, takin, and panda to evaluate the impacts of livestock grazing and sympatric takin on the suitable giant panda habitat. Results revealed that only 16.33% of the area in Wanglang was suitable giant panda habitat, of which 67.66% was shared by livestock, and 97.99% of the remaining suitable panda habitat not shared by livestock was revealed to be shared by takin. The results indicate an unfavorable habitat status of giant panda in Wanglang, with the potential extensive habitat overlap between livestock, takin and panda exerting further pressure. Thus, to effectively protect giant pandas and their habitats, grazing activity should be controlled. Furthermore, to accurately protect sympatric animals, the monitoring of panda and takin activities in the overlapping areas must be maintained.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Melissa Songer ◽  
Melanie Delion ◽  
Alex Biggs ◽  
Qiongyu Huang

Giant pandas (Ailuropoda melanoleuca) are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs) to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.


1991 ◽  
Vol 24 (5) ◽  
pp. 85-96 ◽  
Author(s):  
Qingliang Zhao ◽  
Zijie Zhang

By means of simulated tests of a laboratory–scale oxidation pond model, the relationship between BOD5 and temperature fluctuation was researched. Mathematical modelling for the pond's performance and K1determination were systematically described. The calculation of T–K1–CeCe/Ci) was complex but the problem was solved by utilizing computer technique in the paper, and the mathematical model which could best simulate experiment data was developed. On the basis of experiment results,the concept of plug–ratio–coefficient is also presented. Finally the optimum model recommended here was verified with the field–scale pond data.


2015 ◽  
Vol 9 (1) ◽  
pp. 625-631
Author(s):  
Ma Xiaocheng ◽  
Zhang Haotian ◽  
Cheng Yiqing ◽  
Zhu Lina ◽  
Wu Dan

This paper introduces a mathematical model for Pulse-Width Modulated Amplifier for DC Servo Motor. The relationship between pulse-width modulated (PWM) signal and reference rotation speed is specified, and a general model of motor represented by transfer function is also put forward. When the input signal changes, the rotation speed of the servo motor will change accordingly. By changing zeros and poles, transient performance of this system is discussed in detail, and optimal ranges of the parameters is recommended at the end of discussion.


2021 ◽  
Vol 13 (9) ◽  
pp. 5013
Author(s):  
Dan Zhu ◽  
Degang Yang

Identifying how policy, socioeconomic factors, and environmental factors influence changes in human well-being (HWB) and conservation efficiency is important for ecological management and sustainable development, especially in the Giant Panda National Park (GPNP). In this study, we systematically analyzed the differences in the conservation status of the giant panda habitat and changes in HWB over 15 years in the GPNP, which includes six mountain sites, Minshan (MS), Qionglai (QLS), Xiaoxiangling (XXL), Liangshan (LS), Qinling (QL), and Daxiangling (DXL). Redundancy analyses were used to determine the factors contributing (policy, socioeconomic factors, and environmental factors) to HWB and giant panda habitat conservation (HC). In addition, using a structural equation model (SEM), we investigated the relationship between the aforementioned three factors and their direct and indirect effects on HWB and HC. The results indicated that there was spatiotemporal heterogeneity of HWB and HC in our study area. There was an increasing number of plant species as well as an increased number of giant panda in GPNP. Generally, HWB in 2015 showed an increasing trend compared with that in 2000. Socioeconomic factors (23.6%) have the biggest influence on HWB and HC, followed by policy (23.2%) and environmental factors (19.4%). Conservation policy had a significantly positive influence on HWB (0.52), while it negatively influenced HC (−0.15). Socioeconomic factors significantly negatively influenced HWB (−0.38). The formulation and implementation of policies to promote economic development will contribute to the protection of giant pandas and their habitat. Our results provide insight on the conservation status of the giant panda habitat, HWB, and factors influencing them in different mountain sites in the GPNP, as well as having implications for the future management of the GPNP.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1781
Author(s):  
Samer Al Ghour

In this paper, we first define soft u-open sets and soft s-open as two new classes of soft sets on soft bitopological spaces. We show that the class of soft p-open sets lies strictly between these classes, and we give several sufficient conditions for the equivalence between soft p-open sets and each of the soft u-open sets and soft s-open sets, respectively. In addition to these, we introduce the soft u-ω-open, soft p-ω-open, and soft s-ω-open sets as three new classes of soft sets in soft bitopological spaces, which contain soft u-open sets, soft p-open sets, and soft s-open sets, respectively. Via soft u-open sets, we define two notions of Lindelöfeness in SBTSs. We discuss the relationship between these two notions, and we characterize them via other types of soft sets. We define several types of soft local countability in soft bitopological spaces. We discuss relationships between them, and via some of them, we give two results related to the discrete soft topological space. According to our new concepts, the study deals with the correspondence between soft bitopological spaces and their generated bitopological spaces.


Sign in / Sign up

Export Citation Format

Share Document