scholarly journals Hydrogenation of Tetralin over Supported Ni and Ir Catalysts

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dipali P. Upare ◽  
Byung Jin Song ◽  
Chul Wee Lee

Selective hydrogenation and ring opening (SRO) of tetrahydronaphthalene (tetralin) was studied over nickel and iridium supported catalysts in the context of the removal of polynuclear aromatics from diesel fuel. The tetralin hydrogenation was carried out in a fixed-bed reactor at 270°C, using H2pressure of 30 bars, WHSV of 2.3 h−1, and H2/feed molar ratio of 40; the resultant products were analyzed by GC and GC-MS. The Ir/SiO2catalyst gave 85% of tetralin conversion and 75.1% of decalin products selectivity whereas Ni/SiO2catalyst showed an unprecedented high catalytic performance with 88.3% of tetralin conversion and 93% of decalin products selectivity. The catalysts were characterized by using different characterization techniques such as XRD, TPR, and HR-TEM to know the physicochemical properties as well as active sites in the catalysts.

Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


2011 ◽  
Vol 236-238 ◽  
pp. 1067-1072
Author(s):  
Li Ping Liu ◽  
Xiao Jian Ma ◽  
Peng Zhang ◽  
Ya Nan Liu

Hydrogen production by ethanol steam reforming over Ni-Cu/ZnO catalyst in the temperatures range of 250-550°C was studied on a fixed bed reactor. The effects of reaction temperature and water/ethanol molar ratio on hydrogen production were investigated. The structure and surface characteristics of the catalyst were measured by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential thermal analyzer (TG-DSC). The results show that the Ni-Cu/ZnO catalyst has good catalytic performance with higher hydrogen yield of 4.87molH2/molEtOH reacted. A comparison of hydrogen production from ethanol steam reforming over Ni-Cu/ZnO catalyst with over a commercial catalyst was made in this paper.


2021 ◽  
Vol 72 (3) ◽  
pp. 33-44
Author(s):  
Haifeng Tian ◽  
Yongyong Nan ◽  
Jinlong Lv ◽  
Fei Zha ◽  
Xiaohua Tang ◽  
...  

Directly incorporated phosphorus species into the framework of HZSM-5 zeolite (H[P, Al]-ZSM-5) was successfully synthesized by the facile hydrothermal method. It was characterized by employing XRD, ICP-OES, SEM, FT-IR, N2 adsorption-desorption, NH3-TPD, XPS and TG-DTA, respectively. The effects of the phosphorus species content, temperature, WHSV, and the molar ratio of methanol/1-butene in coupling transformation of methanol with 1-butene to propylene catalyzed by H[P, Al]-ZSM-5 in a fixed bed reactor were studied systematically. Tests have suggested the acid content and specific surface area of H[P, Al]-ZSM-5 are reduced. Under the condition of reaction temperature at 550�Z, molar ratio of methanol/1-butene to 1.0, reaction pressure at 0.1 MPa and WHSV= 3.53 h-1, the P-modified HZSM-5 zeolite (with the P2O5 molar composition of 0.4 )the selectivity and yield of propylene are 35.6% and 32.5%, respectively.


2010 ◽  
Vol 132 ◽  
pp. 228-235 ◽  
Author(s):  
Xu Li ◽  
Guan Zhong Lu ◽  
Yang Long Guo ◽  
Yun Guo ◽  
Yan Qin Wang

A novel solid superbase catalyst of La2O3-ZnO/ZrO2 was prepared, and its H– value (Hammett function) of surface basic strength reaches 26.5. The catalytic activity of La2O3-ZnO/ZrO2 was evaluated for the transesterification of soybean oil (SBO) with methanol to biodiesel in a fixed bed reactor under atmospheric pressure. The results show that the chemical composition of the La2O3-ZnO/ZrO2 catalyst influences both its H– value and catalytic performance, the appropriate content of ZrO2 is 60 wt.% and the La2O3/ZnO molar ratio is 4~5/1. La2O3-ZnO/ZrO2 is an effective catalyst for the transesterification of SBO, and the SBO conversion reaches 71.3% at 70°C for 12h.


2012 ◽  
Vol 535-537 ◽  
pp. 2139-2142
Author(s):  
Ming Yu Zhang ◽  
Hua Wang ◽  
Wen Gui Gao

A series of CuO-ZnO-CeO2-ZrO2/HZSM-5 catalysts were prepared and characterized by XRD, H2-TPR. CO2hydrogenation to DME was carried out in a fixed bed reactor to test the catalytic performance of Ce-modified CuO-ZnO-ZrO2/HZSM-5 catalyst under the condition of GHSV=1800 h-1, p=3.0 MPa and T=250°C. The results indicate that the added CeO2improved the performance of the bifunctional catalysts, the CO2conversion and DME selectivity were obviously improved. CuO-ZnO-CeO2-ZrO2/HZSM-5 catalyst with Ce to Zr molar ratio of 1/1 showed the highest activity for DME synthesis from CO2hydrogenation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1235 ◽  
Author(s):  
José M. Fernández-Morales ◽  
Eva Castillejos ◽  
Esther Asedegbega-Nieto ◽  
Ana Belén Dongil ◽  
Inmaculada Rodríguez-Ramos ◽  
...  

Dimerization of isobutene (IBE) to C8s olefins was evaluated over a range of solid acid catalysts of diverse nature, in a fixed bed reactor working in a continuous mode. All catalytic materials were studied in the title reaction performed between 50–250 °C, being the reaction feed a mixture of IBE/helium (4:1 molar ratio). In all materials, both conversion and selectivity increased with increasing reaction temperature and at 180 °C the best performance was recorded. Herein, we used thermogravimetry analysis (TGA) and temperature programmed desorption of adsorbed ammonia (NH3-TPD) for catalysts characterization. We place emphasis on the nature of acid sites that affect the catalytic performance. High selectivity to C8s was achieved with all catalysts. Nicely, the catalyst with higher loading of Brønsted sites displayed brilliant catalytic performance in the course of the reaction (high IBE conversion). However, optimum selectivity towards C8 compounds led to low catalyst stability, this being attributed to the combined effect between the nature of acidic sites and structural characteristics of the catalytic materials used. Therefore, this study would foment more research in the optimization of the activity and the selectivity for IBE dimerization reactions.


2014 ◽  
Vol 931-932 ◽  
pp. 42-46 ◽  
Author(s):  
Watcharakorn Pranee ◽  
Pornsawan Assawasaengrat ◽  
Arthit Neramittagapong ◽  
Sutasinee Neramittagapong

The synthesis of dimethyl ether via methanol dehydration has been carried out over untreated-diatomite catalyst (DM) and hydrochloric acid modified treatment on diatomite catalyst (DMHC). The reactions were carried out in a fixed-bed reactor. The effects of hydrochloric acid modifications of diatomite on its catalytic performance were studied. The characterization such as XRD, SEM, FT-IR and FT-Raman had no deformation after HCl-modified treatment on catalysts. DMHC catalyst apparently gave the higher methanol conversion rate than DM due to the acidity while the selectivity of dimethyl ether from 250 to 350°C was slightly changed. The acidity was depended upon Al(IV) ions; nevertheless, both Al(V) and Al(VI) were affected and hence increasing the basic active sites. Not only was the competitively catalytic methanol dehydrogenation preferred with basic condition but also methanol-blocking water molecule interaction was the unwanted reaction. In this investigation, the chemical-bond arrangements of silicon and aluminium ions were proposed with solid MAS/NMR. The DMHC catalyst exhibited better DME yield than the DM catalyst, and it could be used as a selective catalyst for DME synthesis from methanol.


Author(s):  
Parisa Sadeghpour ◽  
Mohammad Haghighi ◽  
Mehrdad Esmaeili

Aim and Objective: Effect of two different modification methods for introducing Ni into ZSM-5 framework was investigated under high temperature synthesis conditions. The nickel successfully introduced into the MFI structures at different crystallization conditions to enhance the physicochemical properties and catalytic performance. Materials and Methods: A series of impregnated Ni/ZSM-5 and isomorphous substituted NiZSM-5 nanostructure catalysts were prepared hydrothermally at different high temperatures and within short times. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX), Brunner, Emmett and Teller-Barrett, Joyner and Halenda (BET-BJH), Fourier transform infrared (FTIR) and Temperature-programmed desorption of ammonia (TPDNH3) were applied to investigate the physicochemical properties. Results: Although all the catalysts showed pure silica MFI–type nanosheets and coffin-like morphology, using the isomorphous substitution for Ni incorporation into the ZSM-5 framework led to the formation of materials with lower crystallinity, higher pore volume and stronger acidity compared to using impregnation method. Moreover, it was found that raising the hydrothermal temperature increased the crystallinity and enhanced more uniform incorporation of Ni atoms in the crystalline structure of catalysts. TPD-NH3 analysis demonstrated that high crystallization temperature and short crystallization time of NiZSM-5(350-0.5) resulted in fewer weak acid sites and medium acid strength. The MTO catalytic performance was tested in a fixed bed reactor at 460ºC and GHSV=10500 cm3 /gcat.h. A slightly different reaction pathway was proposed for the production of light olefins over impregnated Ni/ZSM-5 catalysts based on the role of NiO species. The enhanced methanol conversion for isomorphous substituted NiZSM-5 catalysts could be related to the most accessible active sites located inside the pores. Conclusion: The impregnated Ni/ZSM-5 catalyst prepared at low hydrothermal temperature showed the best catalytic performance, while the isomorphous substituted NiZSM-5 prepared at high temperature was found to be the active molecular sieve regarding the stability performance.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


2021 ◽  
Vol 1 (1-2) ◽  
pp. 15
Author(s):  
Elham Yaghoobpour ◽  
Yahya Zamani ◽  
Saeed Zarrinpashne ◽  
Akbar Zamaniyan

Promoters and their loading amount have crucial roles in cobalt Fischer – Tropsch catalysts. In this regard, the effects of vanadium oxide (V2O5) as a proposed promoter for Co catalyst supported on TiO2 have been investigated. Three catalysts with 0, 1, and 3 wt.% of V2O5 promoter loading are prepared by the incipient wetness impregnation method, and characterized by the BET surface area analyzer, XRD, H2-TPR, and TEM techniques. The fixed-bed reactor was employed for their evaluations. It was found that the catalyst containing 1 wt.% V2O5 has the best performance among the evaluated catalysts, demonstrating remarkable selectivity: 92 % C5+ and 5.7 % CH4, together with preserving the amount of CO conversion compared to the unpromoted catalyst. Furthermore, it is reported that the excess addition of V2O5 promoter (> 1 wt.%) in the introduced catalyst leads to the detrimental effect on the CO conversion and C5+ selectivity, mainly owing to diminished active sites by V2O5 loading.


Sign in / Sign up

Export Citation Format

Share Document