scholarly journals Biosynthesis of Osmoregulated Periplasmic Glucans inEscherichia coli: The Phosphoethanolamine Transferase Is Encoded byopgE

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sébastien Bontemps-Gallo ◽  
Virginie Cogez ◽  
Catherine Robbe-Masselot ◽  
Kevin Quintard ◽  
Jacqueline Dondeyne ◽  
...  

Osmoregulated periplasmic glucans (OPGs) are oligosaccharides found in the periplasm of many Gram-negative bacteria. Glucose is the sole constitutive sugar and this backbone may be substituted by various kinds of molecules depending on the species. InE. coli, OPG are substituted by phosphoglycerol and phosphoethanolamine derived from membrane phospholipids and by succinyl residues. In this study, we describe the isolation of theopgEgene encoding the phosphoethanolamine transferase by a screen previously used for the isolation of theopgBgene encoding the phosphoglycerol transferase. Both genes show structural and functional similarities without sequence similarity.

Author(s):  
Morteza Miri ◽  
Sepideh Yazdianpour ◽  
Shamsozoha Abolmaali ◽  
Shakiba Darvish Alipour Astaneh

Background: To obtain endolysin with impact(s) on gram-negative bacteria as well as gram-positive bacteria, N-acetylmuramyl L-alanine-amidase (MurNAc-LAA) from a Bacillus subtilis-hosted Siphoviridae phage (SPP1 phage, Subtilis Phage Pavia 1) was exogenously expressed in Escherichia coli (E. coli).  Methods: The sequences of MurNAc-LAA genes encoding peptidoglycan hydrolases were obtained from the Virus-Host database. The sequence of MurNAc-LAA was optimized by GenScript software to generate MurNAc-LAA-MMI (LysM2) for optimal expression in E. coli. Furthermore, the structure and function of LysM2 was evaluated in silico. The optimized gene was synthesized, subcloned in the pET28a, and expressed in E. coli BL21(DE3). The antibacterial effects of the protein on the peptidoglycan substrates were studied. Results: LysM2, on 816 bp gene encoding a 33 kDa protein was confirmed as specific SPP1 phage enzyme. The enzyme is composed of 271 amino acids, with a half-life of 10 hr in E. coli. In silico analyses showed 34.2% alpha-helix in the secondary structure, hydrophobic N-terminal, and lysine-rich C-terminal, and no antigenic properties in LysM2 protein. This optimized endolysin revealed impacts against Proteus (sp) by turbidity, and an antibacterial activity against Klebsiella pneumoniae, Salmonella typhi-murium, and Proteus vulgaris in agar diffusion assays. Conclusion: Taken together, our results confirmed that LysM2 is an inhibiting agent for gram-negative bacteria.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Joshua L. Herndon ◽  
Rachel E. Peters ◽  
Rachel N. Hofer ◽  
Timothy B. Simmons ◽  
Steven J. Symes ◽  
...  

Abstract Background The utilization of exogenous fatty acids by Gram-negative bacteria has been linked to many cellular processes, including fatty acid oxidation for metabolic gain, assimilation into membrane phospholipids, and control of phenotypes associated with virulence. The expanded fatty acid handling capabilities have been demonstrated in several bacteria of medical importance; however, a survey of the polyunsaturated fatty acid responses in the model organism Escherichia coli has not been performed. The current study examined the impacts of exogenous fatty acids on E. coli. Results All PUFAs elicited higher overall growth, with several fatty acids supporting growth as sole carbon sources. Most PUFAs were incorporated into membrane phospholipids as determined by Ultra performance liquid chromatography-mass spectrometry, whereas membrane permeability was variably affected as measured by two separate dye uptake assays. Biofilm formation, swimming motility and antimicrobial peptide resistance were altered in the presence of PUFAs, with arachidonic and docosahexaenoic acids eliciting strong alteration to these phenotypes. Conclusions The findings herein add E. coli to the growing list of Gram-negative bacteria with broader capabilities for utilizing and responding to exogenous fatty acids. Understanding bacterial responses to PUFAs may lead to microbial behavioral control regimens for disease prevention.


2020 ◽  
Author(s):  
Joshua Herndon ◽  
Rachel Peters ◽  
Rachel Hofer ◽  
Tim Simmons ◽  
Steven Symes ◽  
...  

Abstract Background: The utilization of exogenous fatty acids by Gram-negative bacteria has been linked to many cellular processes, including fatty acid oxidation for metabolic gain, assimilation into membrane phospholipids, and control of phenotypes associated with virulence. The expanded fatty acid handling capabilities have been demonstrated in several bacteria of medical importance; however, a survey of the polyunsaturated fatty acid responses in the model organism Escherichia coli has not been performed. The current study examined the impacts of exogenous fatty acids on E. coli. Results: All PUFAs elicited higher overall growth, with several fatty acids supporting growth as sole carbon sources. Most PUFAs were incorporated into membrane phospholipids as determined by ultra performance liquid chromatography-mass spectrometry, whereas membrane permeability was variably affected as measured by two separate dye uptake assays. Biofilm formation, swimming motility and antimicrobial peptide resistance were altered in the presence of PUFAs, with arachidonic and docosahexaenoic acids eliciting strong alteration to these phenotypes. Conclusions: The findings herein add E. coli to the growing list of Gram-negative bacteria with broader capabilities for utilizing and responding to exogenous fatty acids. Understanding bacterial responses to PUFAs may lead to microbial behavioral control regimens for disease prevention.


2020 ◽  
Author(s):  
Joshua Herndon ◽  
Rachel Peters ◽  
Rachel Hofer ◽  
Steven Symes ◽  
David Giles

Abstract Background: The utilization of exogenous fatty acids by Gram-negative bacteria has been linked to many cellular processes, including fatty acid oxidation for metabolic gain, assimilation into membrane phospholipids, and control of phenotypes associated with virulence. The expanded fatty acid handling capabilities have been demonstrated in several bacteria of medical importance; however, a survey of the polyunsaturated fatty acid responses in the model organism Escherichia coli has not been performed. The current study examined the impacts of exogenous fatty acids on E. coli.Results: All PUFAs elicited higher overall growth, with several fatty acids supporting growth as sole carbon sources. Most PUFAs were incorporated into membrane phospholipids as determined by thin-layer chromatography and UPLC-mass spectrometry, whereas membrane permeability was variably affected as measured by two separate dye uptake assays. Biofilm formation, swimming motility and antimicrobial peptide resistance were altered in the presence of PUFAs, with arachidonic and docosahexaenoic acids eliciting strong alteration to these phenotypes.Conclusions: The findings herein add E. coli to the growing list of Gram-negative bacteria with broader capabilities for utilizing and responding to exogenous fatty acids. Understanding bacterial responses to PUFAs may lead to microbial behavioral control regimens for disease prevention.


2020 ◽  
Author(s):  
Joshua Herndon ◽  
Rachel Peters ◽  
Rachel Hofer ◽  
Tim Simmons ◽  
Steven Symes ◽  
...  

Abstract Background: The utilization of exogenous fatty acids by Gram-negative bacteria has been linked to many cellular processes, including fatty acid oxidation for metabolic gain, assimilation into membrane phospholipids, and control of phenotypes associated with virulence. The expanded fatty acid handling capabilities have been demonstrated in several bacteria of medical importance; however, a survey of the polyunsaturated fatty acid responses in the model organism Escherichia coli has not been performed. The current study examined the impacts of exogenous fatty acids on E. coli. Results: All PUFAs elicited higher overall growth, with several fatty acids supporting growth as sole carbon sources. Most PUFAs were incorporated into membrane phospholipids as determined by Ultra performance liquid chromatography-mass spectrometry, whereas membrane permeability was variably affected as measured by two separate dye uptake assays. Biofilm formation, swimming motility and antimicrobial peptide resistance were altered in the presence of PUFAs, with arachidonic and docosahexaenoic acids eliciting strong alteration to these phenotypes. Conclusions: The findings herein add E. coli to the growing list of Gram-negative bacteria with broader capabilities for utilizing and responding to exogenous fatty acids. Understanding bacterial responses to PUFAs may lead to microbial behavioral control regimens for disease prevention.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


2020 ◽  
Vol 16 (4) ◽  
pp. 481-488
Author(s):  
Heli Sanghvi ◽  
Satyendra Mishra

Background: Curcumin, one of the most important pharmacologically significant natural products, has gained significant consideration among scientists for decades since its multipharmacological activities. 1, 3-Dicarbonyl moiety of curcumin was found to be accountable for the rapid degradation of curcumin molecule. The aim of present work is to replace 1, 3-dicarbonyl moiety of curcumin by pyrazole and phenylpyrazole derivatives with a view to improving its stability and to investigate the role of substitution in N-phenylpyrazole curcumin on its antibacterial activity against both Gram-positive as well as Gram-negative bacteria. Methods: Pyrazole derivatives of curcumin were prepared by heating curcumin with phenyhydrazine/ substituted phenyhydrazine derivatives in AcOH. The residue was purified by silica gel column chromatography. Structures of purified compounds were confirmed by 1H NMR and Mass spectroscopy. The synthesized compounds were evaluated for their antibacterial activity by the microdilution broth susceptibility test method against gram positive (S. aureus) and gram negative (E. coli). Results: Effects of substitution in N-phenylpyrazole curcumin derivatives against S. aureus and E. coli were studied. The most active N-(3-Nitrophenylpyrazole) curcumin (12) exhibits twenty-fold more potency against S. aureus (MIC: 10μg/mL)) and N-(2-Fluoroophenylpyrazole) curcumin (5) fivefold more potency against E. coli (MIC; 50 μg/mL) than N-phenylpyrazole curcumin (4). Whereas, a remarkable decline in anti-bacterial activity against S. aureus and E. coli was observed when electron donating groups were incorporated in N-phenylpyrazole curcumin (4). Comparative studies of synthesized compounds suggest the effects of electron withdrawing and electron donating groups on unsubstituted phenylpyrazole curcumin (4). Conclusion: The structure-activity relationship (SAR) results indicated that the electron withdrawing and electron donating at N-phenylpyrazole curcumin played key roles for their bacterial inhibitory effects. The results of the antibacterial evaluation showed that the synthesized pyrazole derivatives of curcumin displayed moderate to very high activity in S. aureus. In conclusion, the series of novel curcumin derivatives were designed, synthesized and tested for their antibacterial activities against S. aureus and E. coli. Among them, N-(3-Nitrophenylpyrazole curcumin; 12) was most active against S. aureus (Gram-positive) and N-(2-Fluoroophenylpyrazole) curcumin (5) against E. coli (Gram-negative) bacteria.


2017 ◽  
Vol 6 (04) ◽  
pp. 5347 ◽  
Author(s):  
Omar B. Ahmed* ◽  
Anas S. Dablool

Several methods of Deoxyribonucleic acid (DNA) extraction have been applied to extract bacterial DNA. The amount and the quality of the DNA obtained for each one of those methods are variable. The study aimed to evaluate bacterial DNA extraction using conventional boiling method followed by alcohol precipitation. DNA extraction from Gram negative bacilli was extracted and precipitated using boiling method with further precipitation by ethanol. The extraction procedure performed using the boiling method resulted in high DNA yields for both E. coli and K. pneumoniae bacteria in (199.7 and 285.7μg/ml, respectively) which was close to control method (229.3 and 440.3μg/ml). It was concluded that after alcohol precipitation boiling procedure was easy, cost-effective, and applicable for high-yield quality of DNA in Gram-negative bacteria.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 339
Author(s):  
Denise Dekker ◽  
Frederik Pankok ◽  
Thorsten Thye ◽  
Stefan Taudien ◽  
Kwabena Oppong ◽  
...  

Wound infections are common medical problems in sub-Saharan Africa but data on the molecular epidemiology are rare. Within this study we assessed the clonal lineages, resistance genes and virulence factors of Gram-negative bacteria isolated from Ghanaian patients with chronic wounds. From a previous study, 49 Pseudomonas aeruginosa, 21 Klebsiellapneumoniae complex members and 12 Escherichia coli were subjected to whole genome sequencing. Sequence analysis indicated high clonal diversity with only nine P. aeruginosa clusters comprising two strains each and one E. coli cluster comprising three strains with high phylogenetic relationship suggesting nosocomial transmission. Acquired beta-lactamase genes were observed in some isolates next to a broad spectrum of additional genetic resistance determinants. Phenotypical expression of extended-spectrum beta-lactamase activity in the Enterobacterales was associated with blaCTX-M-15 genes, which are frequent in Ghana. Frequently recorded virulence genes comprised genes related to invasion and iron-uptake in E. coli, genes related to adherence, iron-uptake, secretion systems and antiphagocytosis in P. aeruginosa and genes related to adherence, biofilm formation, immune evasion, iron-uptake and secretion systems in K. pneumonia complex. In summary, the study provides a piece in the puzzle of the molecular epidemiology of Gram-negative bacteria in chronic wounds in rural Ghana.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 257
Author(s):  
Florian Turbant ◽  
David Partouche ◽  
Omar El Hamoui ◽  
Sylvain Trépout ◽  
Théa Legoubey ◽  
...  

Hfq is a bacterial regulator with key roles in gene expression. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, thanks to its binding to small regulatory noncoding RNAs. This property is of primary importance for bacterial adaptation and survival in hosts. Small RNAs and Hfq are, for instance, involved in the response to antibiotics. Previous work has shown that the E. coli Hfq C-terminal region (Hfq-CTR) self-assembles into an amyloid structure. It was also demonstrated that the green tea compound EpiGallo Catechin Gallate (EGCG) binds to Hfq-CTR amyloid fibrils and remodels them into nonamyloid structures. Thus, compounds that target the amyloid region of Hfq may be used as antibacterial agents. Here, we show that another compound that inhibits amyloid formation, apomorphine, may also serve as a new antibacterial. Our results provide an alternative in order to repurpose apomorphine, commonly used in the treatment of Parkinson’s disease, as an antibiotic to block bacterial adaptation to treat infections.


Sign in / Sign up

Export Citation Format

Share Document