scholarly journals A Dual-Wideband Double-Layer Magnetoelectric Dipole Antenna with a Modified Horned Reflector for 2G/3G/LTE Applications

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Botao Feng ◽  
Weijun Hong ◽  
Shufang Li ◽  
Wenxing An ◽  
Sixing Yin

A novel dual-wideband double-layer magnetoelectric dipole unidirectional antenna with a modified horned reflector for 2G/3G/LTE applications is proposed. Firstly, a double-layer electric dipole structure is presented to provide a dualwideband, whose folded lower layer mainly serves the lower frequency band while the inclined upper layer works for the upper frequency band. In addition, to reduce the size of the antenna and improve impedance matching, a new feeding structure designed with inverted U-shaped and tapered line is introduced. Finally, a modified horn-shaped reflector, instead of a ground plane, is employed to achieve stable and high gains. The antenna prototype can achieve a bandwidth of 24.4% (790 MHz–1010 MHz) with a stable gain of 7.2 ± 0.6 dBi for the lower band, and a bandwidth of 67.3% (1.38 GHz–2.78 GHz) with a gain of 7.5 ± 0.8 dBi for the upper band covering all the frequency bands for 2G/3G/LTE systems. To the best of our knowledge, it is the first double-layer magnetoelectric dipole antenna proposed. Compared with the existing ME dipole antennas, the proposed antenna, which is completely made of copper, can be easily fabricated at low cost and thus is practicable for 2G/3G/LTE applications.

2021 ◽  
pp. 004051752110134
Author(s):  
Daniel Agu ◽  
Rachel J Eike ◽  
Allyson Cliett ◽  
Dawn Michaelson ◽  
Rinn Cloud ◽  
...  

E-textile antennas have the potential to be the premier on-body wearable sensor. Embroidery techniques, which can be applied to produce e-textile antennas, assist in large production volumes and fast production speeds. This paper focuses on the effects of three commonly used embroidery parameters, namely stitch type, conductive thread location, and stabilizer, on the performance of embroidered dipole antennas in order to determine the ideal embroidery combination for optimal antenna performance. Fifty-four dipole antenna samples were fabricated and measured at the industrial, scientific, and medical (ISM) frequency band of 2.45 GHz. The results of this study show that machine-embroidered antenna designs with satin stitches resonate at a lower frequency and exhibit a lower transmission gain compared with those made with contour stiches, and the conductive thread location in the bobbin location plus the use of a water-soluble stabilizer can help improve impedance matching.


2020 ◽  
Vol 10 (4) ◽  
pp. 6057-6061
Author(s):  
D. T. T. My ◽  
H. N. B. Phuong ◽  
T. T. Huong ◽  
B. T. M. Tu

In this paper, a low-profile broadband antenna is proposed for future 5G millimeter-wave cellular wireless networks. The proposed antenna is a modified Magneto-Electric (ME) dipole, which consists of four metallic plates, grounded vias, an aperture fed, a ground plane, and a microstrip line feed. The antennas are built on RT/Duroid 5880 substrates and have been realized by the printed circuit board technique. A single-element with an overall of 10×10×1.04mm3 (~1.26λo×1.26λo×0.13λo at 38GHz) exhibits an impedance matching of 27.9% (32.2-42.8GHz) for |S11|<–10dB and a realized gain up to 7.5dBi over the frequency band. The usefulness of these antennas as beamforming radiators is demonstrated by a 1×4 element linear array. Also, a wide-band excitation is applied for the linear ME dipole array to realize a broadband array. The simulated results proved the proposed array can operate in a frequency band spreading from 31.4GHz to 42.1GHz with a gain of 12.5dBi and a side-lobe of -13dB


2018 ◽  
Vol 7 (2) ◽  
pp. 68-75 ◽  
Author(s):  
P. N. Vummadisetty ◽  
A. Kumar

This research article presents, a compact 0.19 λ x 0.32 λ size ACS fed printed monopole wideband antenna loaded with multiple radiating branches suitable for LTE2300/WiBro, 5 GHz WLAN and WiMAX applications. The proposed triple band uniplanar antenna encompasses of C shaped strip, L shaped strip, rectangular shaped strip and a lateral ground plane. All the radiating strips and ground plane are etched on the 26 × 15 m size low cost FR4 epoxy substrate. This designed geometry evoked three independent reonances at 2.3 GHz, 3.5 GHz and 5.5 GHz with precise impedance matching over each operating band. The reflection coefficient ( ) response of the presented antenna demonstrates three distinct resonant modes associated with -10 dB bandwidths are about 2.24-2.40 GHz, 3.38-3.83 GHz and 5.0-6.25 GHz respectively. From the study, it is also observed that the proposed design works perfect with microstrip as well as CPW feedings. Hence the designed Multi Feed Multi Band (MFMB) antenna can be easily deployed in to any portable wireless device that works for 2.3/3.5/ 5 GHz frequency bands.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chien-Jen Wang ◽  
Dai-Heng Hsieh

A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4%) at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3%) at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.


2021 ◽  
Vol 10 (1) ◽  
pp. 15-20
Author(s):  
H. Abdi ◽  
J. Nourinia ◽  
C. Ghobadi

This paper presents a compact antenna with co-planar waveguide (CPW) feed line for ultra-wideband (UWB) applications. The proposed antenna consists of a beveled radiating patch with wide rectangular slit at its upper side and a partial ground plane with insertion of symmetrically two-step beveled tapers at its center and sides, which provides a wide operating bandwidth. The antenna is integrated with narrow rectangular-shaped parasitic elements with different lengths placed adjacent to radiant patch to significantly enhance the impedance matching and bandwidth, especially at the upper frequencies. The measured results show an |S11| less than -10 dB bandwidth of 2.5-19.8 GHz with 155% fractional bandwidth. Simulation results are in good agreement with experimental measurements, which exhibits the validity of the proposed design approach. Moreover, the proposed CPW-fed antenna shows omnidirectional radiation patterns with stable gain within the operational range. The proposed compact antenna with low profile, light weight, large frequency bandwidth, ease of fabrication and low cost material is suitable for UWB applications.


2020 ◽  
Vol 12 (10) ◽  
pp. 1020-1028
Author(s):  
Chawanat Lerkbangplad ◽  
Alongkorn Namahoot ◽  
Prayoot Akkaraekthalin ◽  
Suramate Chalermwisutkul

AbstractIn this paper, a compact circularly polarized quadrifilar antenna with planar inverted-F antenna (PIFA) elements is presented. The proposed antenna consists of four PIFA elements and a Wilkinson divider-based feed network fabricated on FR-4 substrate (ɛr = 4.4, loss tangent = 0.02, thickness = 1.6 mm). The total size of the antenna is 120 × 120 × 13.2 mm3. Impedance matching with a reflection coefficient <−15 dB and an axial ratio (AR) <3 dB are achieved over the global ultra-high frequency (UHF) radio frequency identification (RFID) frequency band and beyond. The realized gain ranges from 2.25 to 3.75 dBic within the frequency band of interest from 860 to 960 MHz with a directional radiation pattern. The proposed antenna is compact, low-cost and extremely wideband in terms of matching and AR compared to state-of-the-art UHF RFID reader antennas.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Can Wang ◽  
Yuehe Ge

Novel double-sided printed dipole antennas are proposed and investigated in this paper. Two pairs of identical T-shape metallic loadings are connected to the traditional double-sided printed dipole, enhancing the operating bandwidth. Simulations show that the proposed printed dipole without the reflecting ground plane gives a bandwidth of up to 90.7% forS11<-10 dBor 84.9% forS11<-15 dB, which is significantly greater than those of the traditional printed dipole. The proposed dipole is then applied to design a dual-polarized printed dipole antenna, mounted on a ground plane. Measurements for the prototype show a bandwidth of 68.8% forS11<-10 dB, covering the entire TD-LTE band. The gain is about 6–8 dBi and the isolation is over 24 dB over the bandwidth.


2016 ◽  
Vol 9 (3) ◽  
pp. 599-605 ◽  
Author(s):  
Saurabh Kumar ◽  
Dinesh Kumar Vishwakarma

In this paper, a miniaturized coaxial feed curved-slotted microstrip patch antenna over a fractalized uniplanar compact electromagnetic bandgap (F-UC-EBG) ground plane is proposed and investigated. Compact size is achieved by cutting the curved slots along the orthogonal directions of the patch radiator. The curved-slotted microstrip patch antenna is 38.30% miniaturized as compared with the conventional microstrip patch antenna resonating at 2.38 GHz. Furthermore, the ordinary ground plane of the curved slotted patch antenna is replaced by the F-UC-EBG ground plane. Due to the slow wave phenomenon created in the F-UC-EBG structure and the better impedance matching at the lower frequency further miniaturization and improved performance are obtained. The proposed antenna shows 74.76% miniaturization as compared with the conventional microstrip patch antenna resonating at 1.57 GHz and has 2.61% 10-dB fractional bandwidth, 1.49 dB gain, and 81.59% radiation efficiency. The proposed antenna is fabricated on a low-cost FR4 substrate having an overall volume of 0.184λ0 × 0.184λ0 × 0.0236λ0 at 1.57 GHz GPS band. The measured and simulated results are in good agreement and predicting appropriateness of the antenna in portable and handheld communication systems for GPS applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Minghuan Wang ◽  
Jingchang Nan ◽  
Jing Liu

A miniaturized ultra-wideband multiple-input multiple-output (UWB MIMO) two-port antenna with high isolation based on FR4 is designed in this article. The size of the antenna is only 18 × 28 × 1.6 mm3. The MIMO antenna consists of two identical antenna elements symmetrically placed on the same dielectric substrate in opposite directions. By loading three crossed X-shaped stubs between two unconnected ground planes, high isolation and good impedance matching are achieved. The working frequency band measured by this UWB MIMO antenna is 1.9–14 GHz, and the isolation is kept above 20.2 dB in the whole analysis frequency band. Good radiation characteristics as well as envelope correlation coefficient (ECC, <0.09), mean effective gain (MEG), and channel capacity loss (CCL) in the passband meet the requirements of the application, which can be applied to the UWB wireless communication system. To verify the applicability of the proposed method for enhancing the isolation between antenna elements, the two-port antenna structure was extended to a four-port antenna structure. In the case of loading the X-shaped stubs to connect to the ground plane, the isolation of the antenna is maintained above 15.5 dB within 1.7–14 GHz.


An efficient H-shaped micro strip multiband antenna is constructed and simulated with slot structure of Split Ring Resonator (SRR) in a ground plane as Defected Ground Structure (DGS) for high frequency applications is proposed. Micro Strip patch antenna is mostly preferred because of its very good radiation properties. Also it is the light weight and low cost device so its usage is very high and its fabrication method is very easy. DGS is used to alter the current path in the ground part of the patch antenna by making this it provides multiband support. The H shape patch antenna with the proper ground plane is normally chosen for increasing the bandwidth of the antenna by providing impedance matching and reduce loss. This type of antenna mostly used in where small size and broad beam width are required. In the simulation VSWR, radiation pattern, gain, return loss were measured using simulation software HFSS


Sign in / Sign up

Export Citation Format

Share Document