scholarly journals Characterization ofLegionella pneumophilaIsolated from Environmental Water and Ashiyu Foot Spa

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Masato Tachibana ◽  
Masaya Nakamoto ◽  
Yui Kimura ◽  
Takashi Shimizu ◽  
Masahisa Watarai

Hot springs are the most common infectious source ofLegionella pneumophilain Japan. However, little is known about the association betweenL. pneumophilaand environmental waters other than hot springs. In this study, water samples from 22 environmental water sites were surveyed; of the 22 samples, five wereL. pneumophilapositive (23%).L. pneumophilawas mainly isolated from ashiyu foot spas, a type of hot spring for the feet (3/8, 38%). These isolates had genetic loci or genes that encoded the virulence factors ofL. pneumophila. Moreover, these isolates showed higher intracellular growth and stronger cytotoxicity compared with the reference strain. These results suggest that ashiyu foot spa can be the original source forL. pneumophilainfection.

2021 ◽  
Vol 5 (2) ◽  
pp. 88-99
Author(s):  
Chaterine Rahel ◽  
Retno Adriyani ◽  
Hernanda Arie Nurfitria

Natural hot spring is one of the recreational water. The public used it for recreation, relaxation, and therapy. The water quality should meet standards, such as free from microorganisms to prevent the onset of health complaints. This paper aimed to identify the pathogenic microorganisms and recreational water illness in natural hot spring users from worldwide studies. Method: This systematic review analysis use PRISMA Protocol as a guide to provide this article and PEO Framework to specified the criteria. Various database used to find those article is NCBI, Google Scholar, and Science Direct. In total of 10 eligible articles to analyse from 2010 -2020. Discussion: The result showed that hot spring users experienced health complaints after using hot springs contaminated with pathogenic microorganisms. The microorganisms identified were Naegleria spp, Naegleria fowleri, Legionella pneumophila, Vittaforma corneae, Mycobacterium avium-intracellulare Complex (MAC), Pseudomonas aeruginosa, and Mycobacterium phocaicum. Recreation water illnesses identified were Primary Amebic Meningoencephalitis (PAM), Legionella pneumonia, Pseudomonas foliculitis, Pseudomonas mastitis, Microsporidial keratitis, Hot tub lung (HTL), and P. aeruginosa pneumonia. Besides the water quality, age, comorbid, and frequency of visiting hot springs were risk factors of recreational water illness. Conclusion: The onset of recreational water illness in users of hot springs was influenced by the quality of water microbiology and age.


2014 ◽  
Vol 80 (7) ◽  
pp. 2150-2157 ◽  
Author(s):  
Tian Qin ◽  
Haijian Zhou ◽  
Hongyu Ren ◽  
Hong Guan ◽  
Machao Li ◽  
...  

ABSTRACTLegionella pneumophilaserogroup 1 causes Legionnaires' disease. Water systems contaminated withLegionellaare the implicated sources of Legionnaires' disease. This study analyzedL. pneumophilaserogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n= 96), hot springs (n= 42), and potable water systems (n= 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n= 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons amongL. pneumophilastrains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmentalL. pneumophilaserogroup 1 isolates, similar to its prevalence in Japan and South Korea.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Beverley C. Millar ◽  
Jonalyn Ferris ◽  
Alan Murphy ◽  
Norman Reid ◽  
John E. Moore

Given the importance of disinfecting showerheads from Legionella species and the lack of instructions as to how to successfully achieve this, the aim of this study was to examine the ability of domestic steam disinfection to successfully disinfect showerheads from Legionella species. Steam disinfection of Legionella pneumophila [n=3; L. pneumophila serogroup 2–15 (wildtype environmental water isolate); L. pneumophila serogroup 1 NCTC11192 (reference strain); L. pneumophila serogroup 1 (wildtype environmental water isolate)], L. erythra (wildtype environmental water isolate) and L. bozemanii CRM11368M (reference strain) were examined in this study. Steam disinfection employing a baby bottle steam disinfector device eradicated all Legionella organisms tested. Steam disinfection, when performed properly under the manufacturer’s instructions, offers a relatively inexpensive, simple, versatile and widely available technology for the elimination of Legionella species from contaminated showerheads. We therefore advocate the employment of such devices to regularly disinfect showerheads and shower tubing in hairdressing salons, barber shops and gyms, as a critical control in the elimination of these organisms from these sources, thereby enhancing customer/client/staff safety.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 115-123 ◽  
Author(s):  
R. Shoji ◽  
A. Sakoda ◽  
Y. Sakai ◽  
M. Suzuki

The quality of environmental waters such as rivers is often deteriorated by various kinds of trace and unidentified chemicals despite the recent development of sewage systems and wastewater treatment technologies. In addition to contamination by particular toxicants, complex toxicity due to multi-component chemicals could be much more serious. The environmental situation in bodies of water in Japan led us to apply bioassays for monitoring the water quality of environmental waters in order to express the direct and potential toxicity to human beings and ecosystems rather than determinating concentrations of particular chemicals. However, problems arose from the fact that bioassays for pharmaceutical purposes generally required complicated, time-consuming, expert procedures. Also, a methodology for feedback of the resultant toxicity data to water environment management has not been established yet. To this end, we developed a novel bioassay based on the low-density lipoprotein (LDL) uptake activity of human hepatoblastoma cells. The assay enabled us to directly detect the toxicity of environmental waters within 4 hours of exposure. This is a significantly quick and easy procedure as compared to that of conventional bioassays. The toxicity data for 255 selected chemicals and environmental waters obtained by this method were organized by a mathematical equation in order to make those data much more effectively and practically useful to the management of environmental waters. Our methodology represents a promising example of applying bioassays to monitor environmental water quality and generating potential solutions to the toxicity problems encountered.


2004 ◽  
Vol 72 (10) ◽  
pp. 5983-5992 ◽  
Author(s):  
Jessica A. Sexton ◽  
Jennifer L. Miller ◽  
Aki Yoneda ◽  
Thomas E. Kehl-Fie ◽  
Joseph P. Vogel

ABSTRACT Legionella pneumophila utilizes a type IV secretion system (T4SS) encoded by 26 dot/icm genes to replicate inside host cells and cause disease. In contrast to all other L. pneumophila dot/icm genes, dotU and icmF have homologs in a wide variety of gram-negative bacteria, none of which possess a T4SS. Instead, dotU and icmF orthologs are linked to a locus encoding a conserved cluster of proteins designated IcmF-associated homologous proteins, which has been proposed to constitute a novel cell surface structure. We show here that dotU is partially required for L. pneumophila intracellular growth, similar to the known requirement for icmF. In addition, we show that dotU and icmF are necessary for optimal plasmid transfer and sodium sensitivity, two additional phenotypes associated with a functional Dot/Icm complex. We found that these effects are due to the destabilization of the T4SS at the transition into the stationary phase, the point at which L. pneumophila becomes virulent. Specifically, three Dot proteins (DotH, DotG, and DotF) exhibit decreased stability in a ΔdotU ΔicmF strain. Furthermore, overexpression of just one of these proteins, DotH, is sufficient to suppress the intracellular growth defect of the ΔdotU ΔicmF mutant. This suggests a model where the DotU and IcmF proteins serve to prevent DotH degradation and therefore function to stabilize the L. pneumophila T4SS. Due to their wide distribution among bacterial species and their genetic linkage to known or predicted cell surface structures, we propose that this function in complex stabilization may be broadly conserved.


2021 ◽  
Vol 13 (1) ◽  
pp. 820-834
Author(s):  
Jun Ma ◽  
Zhifang Zhou

Abstract The exploration of the origin of hot spring is the basis of its development and utilization. There are many low-medium temperature hot springs in Nanjing and its surrounding karst landform areas, such as the Tangshan, Tangquan, Lunshan, and Xiangquan hot springs. This article discusses the origin characters of the Lunshan hot spring with geological condition analysis, hydrogeochemical data, and isotope data. The results show that the hot water is SO4–Ca type in Lunshan area, and the cation content of SO4 is high, which are related to the deep hydrogeological conditions of the circulation in the limestone. Carbonate and anhydrite dissolutions occur in the groundwater circulation process, and they also dominate the water–rock interaction processes in the geothermal reservoir of Lunshan. The hot water rising channels are deeply affected by the NW and SN faults. Schematic diagrams of the conceptual model of the geothermal water circulation in Lunshan are plotted. The origin of Tangshan, Tangquan, and Xiangquan hot springs are similar to the Lunshan hot spring. In general, the geothermal water in karst landforms around Nanjing mainly runs through the carbonate rock area and is exposed near the core of the anticlinal structure of karst strata, forming SO4–Ca/SO4–Ca–Mg type hot spring with the water temperature less than 60°C. The characters of the hot springs around Nanjing are similar, which are helpful for the further research, development, and management of the geothermal water resources in this region.


Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


2021 ◽  
Vol 9 (7) ◽  
pp. 1473
Author(s):  
Ani Saghatelyan ◽  
Armine Margaryan ◽  
Hovik Panosyan ◽  
Nils-Kåre Birkeland

The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude mineralized geothermal springs (temperature range 25.8–70 °C and pH range 6.0–7.5) in Armenia and Nagorno-Karabakh. All these geothermal springs are at altitudes ranging from 960–2090 m above sea level and are located on the Alpide (Alpine–Himalayan) orogenic belt, a seismically active region. A mixed-cation mixed-anion composition, with total mineralization of 0.5 mg/L, has been identified for these thermal springs. The taxonomic diversity of hot spring microbiomes has been examined using culture-independent approaches, including denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene library construction, 454 pyrosequencing, and Illumina HiSeq. The bacterial phyla Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes are the predominant life forms in the studied springs. Archaea mainly include the phyla Euryarchaeota, Crenarchaeota, and Thaumarchaeota, and comprise less than 1% of the prokaryotic community. Comparison of microbial diversity in springs from Karvachar with that described for other terrestrial hot springs revealed that Proteobacteria, Bacteroidetes, Actinobacteria, and Deinococcus–Thermus are the common bacterial groups in terrestrial hot springs. Contemporaneously, specific bacterial and archaeal taxa were observed in different springs. Evaluation of the carbon, sulfur, and nitrogen metabolism in these hot spring communities has revealed diversity in terms of metabolic activity. Temperature seems to be an important factor in shaping the microbial communities of these springs. Overall, the diversity and richness of the microbiota are negatively affected by increasing temperature. Other abiotic factors, including pH, mineralization, and geological history, also impact the structure and function of the microbial community. More than 130 bacterial and archaeal strains (Bacillus, Geobacillus, Parageobacillus, Anoxybacillus, Paenibacillus, Brevibacillus Aeribacillus, Ureibacillus, Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, Arcobacter, Nitropspira, and Methanoculleus) have been reported, some of which may be representative of novel species (sharing 91–97% sequence identity with their closest matches in GenBank) and producers of thermozymes and biomolecules with potential biotechnological applications. Whole-genome shotgun sequencing of T. scotoductus K1, as well as of the potentially new Treponema sp. J25 and Anoxybacillus sp. K1, were performed. Most of the phyla identified by 16S rRNA were also identified using metagenomic approaches. Detailed characterization of thermophilic isolates indicate the potential of the studied springs as a source of biotechnologically valuable microbes and biomolecules.


2015 ◽  
Vol 112 (37) ◽  
pp. E5208-E5217 ◽  
Author(s):  
Dervla T. Isaac ◽  
Rita K. Laguna ◽  
Nicole Valtz ◽  
Ralph R. Isberg

Iron is essential for the growth and virulence of most intravacuolar pathogens. The mechanisms by which microbes bypass host iron restriction to gain access to this metal across the host vacuolar membrane are poorly characterized. In this work, we identify a unique intracellular iron acquisition strategy used byLegionella pneumophila.The bacterial Icm/Dot (intracellular multiplication/defect in organelle trafficking) type IV secretion system targets the bacterial-derived MavN (more regions allowing vacuolar colocalization N) protein to the surface of theLegionella-containing vacuole where this putative transmembrane protein facilitates intravacuolar iron acquisition. TheΔmavNmutant exhibits a transcriptional iron-starvation signature before its growth is arrested during the very early stages of macrophage infection. This intracellular growth defect is rescued only by the addition of excess exogenous iron to the culture medium and not a variety of other metals. Consistent with MavN being a translocated substrate that plays an exclusive role during intracellular growth, the mutant shows no defect for growth in broth culture, even under severe iron-limiting conditions. Putative iron-binding residues within the MavN protein were identified, and point mutations in these residues resulted in defects specific for intracellular growth that are indistinguishable from the ΔmavNmutant. This model of a bacterial protein inserting into host membranes to mediate iron transport provides a paradigm for how intravacuolar pathogens can use virulence-associated secretion systems to manipulate and acquire host iron.


Sign in / Sign up

Export Citation Format

Share Document