scholarly journals Norcantharidin, Derivative of Cantharidin, for Cancer Stem Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Chen-Hsi Hsieh ◽  
K. S. Clifford Chao ◽  
Hui-Fen Liao ◽  
Yu-Jen Chen

Cancer stem cells (CSCs) existing in human cancers have been demonstrated to be a major cause of cancer treatment resistance, invasion, metastasis, and relapse. Self-renewal pathways, Wnt/β-catenin, Sonic hedgehog (Shh), and the Notch signaling pathway play critical roles in developing CSCs and lead to angiogenesis, migration, invasion, and metastasis. Multidrug resistance (MDR) is an unfavorable factor causing the failure of treatments against cancer cells. The most important and thoroughly studied mechanism involved in MDR is the active efflux of chemotherapeutic agents through membrane drug transporters. There is growing evidence that Norcantharidin (NCTD), a water-soluble synthetic small molecule derivative of naturally occurring cantharidin from the medicinal insect blister beetle (Mylabris phalerataPallas), is capable of chemoprevention and tumor inhibition. We summarize investigations into the modulation of self-renewal pathways and MDR in CSCs by NCTD. This review may aid in further investigation of using NCTD to develop more effective strategies for cancer treatment to reduce resistance and recurrence.

Author(s):  
Connor Sweeney ◽  
Lynn Quek ◽  
Betty Gration ◽  
Paresh Vyas

The concept of cancer stem cells (CSCs) emerged from our understanding of the way in which normal tissues are generated from multipotent stem cells. Regenerative tissues exhibit a cellular hierarchy of differentiation, which is maintained by stem cells. Evidence from experimental models has indicated that a similar hierarchy is seen in at least some cancers, where CSCs give rise to disordered and dysfunctional tissues, leading to disease. The CSC model proposes that tumours can be divided into at least two distinct populations. The stem cells are a specialized population of cancer cells with the unique property of long-term self-renewal that maintain the growth of the cancerous clone. These stem cells give rise to the second population of cells, which form the bulk of the tumour, and lack indefinite self-renewal. Recently, our understanding of CSCs has been refined through combining genetic, epigenetic, and functional models of tumorigenesis. Malignant transformation occurs as the result of sequential acquisition of genetic mutations. Capacity for self-renewal is essential for a clone to survive and progress to become cancerous. If an oncogenic mutation occurs in a cell that is incapable of self-renewal, the clone will become exhausted through differentiation. CSCs may survive anticancer chemotherapy and increasing evidence indicates their role in mediating treatment resistance and relapse. Therefore, strategies to eradicate cancers must effectively target the stem cells that maintain their growth. CSC-directed therapeutic strategies are currently being explored in experimental studies and clinical trials but reducing toxicity to normal tissue stem cells represents a significant challenge.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jeffrey Koury ◽  
Li Zhong ◽  
Jijun Hao

The Wnt, Hedgehog, and Notch pathways are inherent signaling pathways in normal embryogenesis, development, and hemostasis. However, dysfunctions of these pathways are evident in multiple tumor types and malignancies. Specifically, aberrant activation of these pathways is implicated in modulation of cancer stem cells (CSCs), a small subset of cancer cells capable of self-renewal and differentiation into heterogeneous tumor cells. The CSCs are accountable for tumor initiation, growth, and recurrence. In this review, we focus on roles of Wnt, Hedgehog, and Notch pathways in CSCs’ stemness and functions and summarize therapeutic studies targeting these pathways to eliminate CSCs and improve overall cancer treatment outcomes.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Shuping Li ◽  
Kevin A. Goncalves ◽  
Baiqing Lyu ◽  
Liang Yuan ◽  
Guo-fu Hu

AbstractCancer stem cells (CSCs) are an obstacle in cancer therapy and are a major cause of drug resistance, cancer recurrence, and metastasis. Available treatments, targeting proliferating cancer cells, are not effective in eliminating quiescent CSCs. Identification of CSC regulators will help design therapeutic strategies to sensitize drug-resistant CSCs for chemo-eradication. Here, we show that angiogenin and plexin-B2 regulate the stemness of prostate CSCs, and that inhibitors of angiogenin/plexin-B2 sensitize prostate CSCs to chemotherapy. Prostate CSCs capable of self-renewal, differentiation, and tumor initiation with a single cell inoculation were identified and shown to be regulated by angiogenin/plexin-B2 that promotes quiescence and self-renewal through 5S ribosomal RNA processing and generation of the bioactive 3′-end fragments of 5S ribosomal RNA, which suppress protein translation and restrict cell cycling. Monoclonal antibodies of angiogenin and plexin-B2 decrease the stemness of prostate CSCs and sensitize them to chemotherapeutic agents in vitro and in vivo.


2015 ◽  
Vol 14s2 ◽  
pp. CIN.S17294 ◽  
Author(s):  
Roger S. Day

The cancer stem cell hypothesis is that in human solid cancers, only a small proportion of the cells, the cancer stem cells (CSCs), are self-renewing; the vast majority of the cancer cells are unable to sustain tumor growth indefinitely on their own. In recent years, discoveries have led to the concentration, if not isolation, of putative CSCs. The evidence has mounted that CSCs do exist and are important. This knowledge may promote better understanding of treatment resistance, create opportunities to test agents against CSCs, and open up promise for a fresh approach to cancer treatment. The first clinical trials of new anti-CSC agents are completed, and many others follow. Excitement is mounting that this knowledge will lead to major improvements, even breakthroughs, in treating cancer. However, exploitation of this phenomenon may be more successful if informed by insights into the population dynamics of tumor development. We revive some ideas in tumor dynamics modeling to extract some guidance in designing anti-CSC treatment regimens and the clinical trials that test them.


Author(s):  
Se-Ra Park ◽  
Soo-Rim Kim ◽  
In-Sun Hong ◽  
Hwa-Yong Lee

Cancer stem cells (CSCs) have been identified in a multiple of cancer types and resistant to traditional cancer therapies such as chemotherapeutic agents and radiotherapy, which may destroy bulk tumor cells but not all CSCs, contributing to reformation tumor masses and subsequent relapse. Moreover, it is very difficult to effectively identify and eliminate CSCs because they share some common phenotypic and functional characteristics of normal stem cells. Therefore, finding better therapeutic strategies to selectively target CSCs might be helpful to reduce subsequent malignancies. In the present study, we found that caffeic acid effectively suppresses self-renewal capacity, stem-like characteristics, and migratory capacity of CD44+ and CD133+ colorectal CSCs in vitro and in vivo. In addition, we also revealed that PI3K/Akt signaling may be linked to multiple colorectal CSC-associated characteristics, such as radio-resistance, stem-like property, and tumorigenic potential. To the best of our knowledge, this is the first study demonstrating that caffeic acid effectively targets colorectal CSC populations by inhibiting the growth and/or self-renewal capacity of colorectal CSCs through PI3K/Akt signaling in vitro and in vivo.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 2-3
Author(s):  
J Douchin ◽  
V Giroux

Abstract Background Esophageal cancer is a particularly deadly cancer with a 5-year survival rate of only 14% in Canada. Treatment resistance ascribed for at least 30% of the death. The acquisition of resistance to radio- and chemotherapy is mostly attributed to the presence of cancer stem cells (CSCs) and their persistence following classical treatments. CSCs are a subpopulation of tumor cells with high self-renewal and multipotent capacity which amongst others contribute to tumor heterogeneity. Our previous work identified Krt15+ esophageal cells as a rare and long-lived subpopulation of basal cells with higher self-renewal and multipotent capacities than other basal cells. Furthermore, preliminary observations suggest that Krt15+ cells could act as the cell-of-origin for ESCC, the most prevalent type of esophageal cancer worldwide. Though, we still ignore the role of Krt15+ cells in later stages of esophageal cancer such as treatment resistance and if therefore, they could act as CSC. Aims Determine if Krt15+ cells act as CSCs in ESCC patients and if they could contribute to treatment resistance. Methods To do so, we used Krt15-CrePR1;R26mT/mG mice treated with the carcinogen 4 Nitroquinoline-1-oxide (4NQO) in their drinking water for 16 weeks to induce ESCC. Twelve weeks following the beginning of 4NQO treatment, we induced Cre recombination with RU486, a PR1 agonist, leading to GFP expression specifically in Krt15+ cells. Following 4NQO treatment, mice were put back on normal water for 8 to 12 weeks allowing tumors to grow. At euthanasia, esophageal tumor cells were FACS sorted to isolate Krt15+ (GFP+) and Krt15- (GFP-) cells, which were then grown as tumoroids. Results We first validated that 4NQO successfully induced the formation of esophageal lesions in our model, which comprises Krt15+ and Krt15- tumor cells. Tumoroids were then successfully derived from these FACS-sorted cell populations. We demonstrated the increase of CSC-like cells within Krt15+ tumoroids compared to Krt15- tumoroids by measuring the presence of CD44highCD24high cells, two well-known CSC markers, by flow cytometry. Interestingly, Krt15+ and Krt15- tumoroids are histologically distinct. As observed for normal cells, Krt15+ tumoroids appeared as more multipotent and heterogenous than Krt15- tumoroids. Furthermore, Krt15+ tumoroids display higher hyperplasia than Krt15- tumoroids suggesting that Krt15+ tumor cells are functionally distinct from Krt15- tumor cells. Conclusions Krt15+ tumoroids display higher CSC content and hyperplastic capacity suggesting their potential role in esophageal cancer. With this project, we aim to highlight the role of Krt15+ cells in treatment resistance and put forward new targets to overcome this deadly issue in ESCC patients. Funding Agencies CAGCanada research chair TIER 2


Author(s):  
PHU HUNG NGUYEN ◽  
Thu Ha Ngo ◽  
Thi Binh Luu

All trans retinoic acid (ATRA) plays an important role in many cellular processes and is a potent promising substance for cancer therapy. The self-renewal is a prominent feature of cancer stem cells that is tightly controlled by a number of specific genes, and is also mediated by the cell signaling pathways. The Notch signal pathway has been shown to be one of the few major molecular signaling pathways of cancer stem cells, which regulates self-renewal and survival of cancer stem cells. In this study, we showed that ATRA reduced the expression of important genes involved in self-renewal of cells including Sox2, KLF4, DMNT1 and MYC as well as TBGUT markers such as CD24, MUC1 and CD90. Furthermore, we indicate that the ATRA-induced expression of self-renewal genes and cancer stem cell markers of gastric cancer stem cells can be mediated by the regulation of the Notch signaling pathway.


2019 ◽  
Vol 14 (5) ◽  
pp. 428-436 ◽  
Author(s):  
Gabriele D. Bigoni-Ordóñez ◽  
Daniel Czarnowski ◽  
Tyler Parsons ◽  
Gerard J. Madlambayan ◽  
Luis G. Villa-Diaz

Cancer is a highly prevalent and potentially terminal disease that affects millions of individuals worldwide. Here, we review the literature exploring the intricacies of stem cells bearing tumorigenic characteristics and collect evidence demonstrating the importance of integrin α6 (ITGA6, also known as CD49f) in cancer stem cell (CSC) activity. ITGA6 is commonly used to identify CSC populations in various tissues and plays an important role sustaining the self-renewal of CSCs by interconnecting them with the tumorigenic microenvironment.


Sign in / Sign up

Export Citation Format

Share Document