scholarly journals Effects of the Boron-Doped p+Emitter on the Efficiency of the n-Type Silicon Solar Cell

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Eun-Young Kim ◽  
Jeong Kim

The optimum structure of the p+emitter for the n-type silicon solar cell was determined with the simulation of the boron doping concentration. The boron concentration (NB) in the p+emitter was varied in the range of1×1017and2×1022 atoms/cm3while maintaining the base doping concentration at2×1016 atoms/cm3. With the increase of the boron concentration, the open circuit voltage (VOC) of the cell increased up to 0.525 V and then was nearly saturated atNB>5×1018 atoms/cm3. On the other hand, the short circuit current density (JSC) began to decrease atNB>1×1019 atoms/cm3due to the increase of the surface recombination loss, and without considering the variation of the contact resistance along the emitter doping level, the maximum efficiency of the cell was obtained at aroundNB=5×1018 atoms/cm3. While the contact resistance of the electrode decreases with the increase of the doping concentration in the p+emitter, and with consideration of the variation of the contact resistance, the optimum value ofNBfor maximum efficiency shifted to the higher doping level.

2021 ◽  
Author(s):  
Saba Siraj ◽  
Sofia Akbar Tahir ◽  
Adnan Ali

Abstract The aim of this research work was to assess the impact of front and rear grid metallization pattern on the performance of silicon solar cells. We have investigated the effect of front grid metallization design and geometry on the open-circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and efficiency (ŋ) of silicon solar cells by using Griddler 2.5 simulation program. We used different number of metal fingers ranging from 80–120 having width of 60 µm and different number of busbars ranging from 1–5 busbars on the front and rear side of solar cells for optimization. We have also calculated the efficiency and fill factor at different values of front contact resistance ranging from (0.1–100) mohm-cm2, front and rare layer sheet resistances ranging from (60–110) ohm/sq and different edge gaps. We found that the maximum efficiency and fill factor was obtained with those parameters, when front and rare contact resistances were taken as same. We have designed an optimized silicon solar cell with 115 number of fingers, 4 busbars, front and rare contact resistance of 0.1 mohm-cm2 and front and rare layer sheet resistance of 60 ohm/sq. In this way we were able to successfully optimize the silicon solar cell having efficiency and fill factor of 19.49 % and 81.36 % respectively, for our best optimized silicon solar cell.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Sivakumar Parthasarathy ◽  
P. Neelamegam ◽  
P. Thilakan ◽  
N. Tamilselvan

Multicrystalline silicon solar cell and its module with 18 cells connected in series were mounted on an inclined rack tilted 12° South positioned at latitude of 12.0107° and longitude of 79.856°. Corresponding solar irradiance was measured using an optical Pyranometer. Measured irradiance, open circuit voltage (), and short circuit current () values were analyzed. values of both the cell and module were found saturated at above the critical value of illuminations which were different from each other. The integrated daily efficiency for the cell and module were ~10.25% and ~9.39%, respectively, that were less than their respective standard test condition’s value. The reasons for this drop in efficiencies were investigated and reported.


2011 ◽  
Vol 399-401 ◽  
pp. 1477-1480
Author(s):  
Yan Li Xu ◽  
Jin Hua Li

n-ZnO thin films doped In with 2 atm.% were deposited on p-type silicon wafer with textured surface by Ion Beam Enhanced Deposition method, after annealing and prepared front and back electrodes, the n-ZnO/p-Si heterojunction samples were fabricated. The photoelectric property of the sample were measured and compared with silicon solar cell. The result indicated the saturated photocurrent of n-ZnO/p-Si heterojunction was 20% greater than one of the Si solar cell. It means the ZnO/Si heterojunction has a higher ability of produce photoelectron then one of silicon solarcell. The result of the photovoltaic test of n-ZnO/p-Si heterojunction show The open circuit voltage and short-circuit current of the n-ZnO/p-Si heterojunction was 400mV and 5.5mA/cm2 respectively. It was much smaller than the one of silicon solar cells. The reason was discussed


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Peyman Jelodarian ◽  
Abdolnabi Kosarian

The effect of p-layer and i-layer characteristics such as thickness and doping concentration on the electrical behaviors of the a-Si:H/a-SiGe:H thin film heterostructure solar cells such as electric field, photogeneration rate, and recombination rate through the cell is investigated. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. In particular, current density of the cell can be enhanced without deteriorating its open-circuit voltage. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6% compared with the traditional a-Si:H solar cell. This work presents a novel numerical evaluation and optimization of amorphous silicon double-junction (a-Si:H/a-SiGe:H) thin film solar cells and focuses on optimization of a-SiGe:H midgap single-junction solar cell based on the optimization of the doping concentration of the p-layer, thicknesses of the p-layer and i-layer, and Ge content in the film. Maximum efficiency of 23.5%, with short-circuit current density of 267 A/m2and open-circuit voltage of 1.13 V for double-junction solar cell has been achieved.


Author(s):  
ANUBHAV GUPTA ◽  
PRAVEEN S ◽  
ABHISHEK KUMAR ◽  
PRIYANKA SHREE ◽  
SUCHANA MISHRA

Organic solar cells using P3HT: PCBM as an active layer on ITO coated glass substrates were fabricated and characterized. Different air annealing procedures and cathode materials were tried and the characteristics were compared with that of a standard thin film polycrystalline silicon solar cell. It was found that the sample prepared with post-deposition air annealing at 130 oC improves the open circuit voltage (Voc) considerably. Besides, short circuit current (Isc) and the efficiency (η) were highest for the sample with a non annealed active layer. Series resistance (Rs) for this sample was lowest, but 103 times higher than that of the silicon solar cell, which in turn may have reduced the efficiency value for the organic cell compared to silicon.


Author(s):  
A. D. Péné ◽  
◽  
F. I. Barro ◽  
M. Kamta ◽  
L. Bitjoka ◽  
...  

The aim of this work is to present a study of the recombination velocities at the junction initiating the shortcircuit (Sfsc) and limiting the open circuit (Sfoc) of a silicon solar cell under magnetic field in the static regime. From the continuity equation, the density of minority charge carriers in the base, the photocurrent density, and the phototension are determined. The study of the photocurrent density and the phototension, as a function of the junction recombination velocity, makes it possible to determine the recombination velocities at the junction initiating the short-circuit and limiting the open circuit respectively. From the profile of the variation of the photocurrent density and of the phototension as a function of the junction recombination velocity, a technique for determining the junction recombination velocities initiating the short circuit situation and limiting the open circuit is presented.


Author(s):  
Sarhan Musa

<p>In this paper, the effect of magnetic field on I-V characteristics of a silicon solar cell of n+pp+ structure is studied in dark and illumination modes. In dark, both the current and the voltage decrease with increasing the magnetic field in forward bias. However in reverse bias, the behavior is different. Under illumination, the effect of magnetic field on I-V characteristics of the silicon solar cell is studied experimentally and simulated using Neural Network Algorithm (NNA). Both short circuit current (I<sub>sc</sub>) and open circuit voltage (V<sub>oc</sub>) are measured under the influence of magnetic field. The solar cell efficiency and the fill factor (FF) are calculated without and with the magnetic field. This performance testing of the solar cell under magnetic field can be considered as one of the non-destructive reliability tools.<strong></strong></p>


Author(s):  
ياسمين أحمد ◽  
مناهل النور ايدام مفضل ◽  
إبراهيم الحاج ◽  
يونس أبو عائشة ◽  
مبارك تقابو

The objective of this research is to study the variation of temperature and solar intensity on the performance of commercial silicon solar cells. This experiment was done at West Kordofan University, Department of Physics. A silicon solar cell was positioned at 450 in the direction of the sun. Then the current-voltage relationship (I-V) was recorded every hour during the day. The results in terms of I-V characteristics demonstrated that the short-circuit current increased linearly with the increase in temperature in the range of (26-33) 0 C, while the open-circuit voltage decreased logarithmically. On the other hand, the fill factor was found to be in the range of 72-78, and the corresponding efficiency was in the range of (6-11%). This result showed that En- Nahud town has a high solar intensity of approximately 1000 W/m2. Therefore, it is found to be a perfect chosen area for providing solar cell investigations and projects in different renewable energy applications.


2021 ◽  
Vol 24 (02) ◽  
pp. 192-199
Author(s):  
S. Hussain ◽  
◽  
Md. T. Prodhan ◽  
Md. M. Rahman ◽  
◽  
...  

Simulation analysis has been carried out to determine the perfect structural parameters of homojunction p-i-n In0.7Ga0.3N solar cell to obtain maximum overall efficiency. It has been demonstrated that n-layer of 16-nm, intrinsic layer (i-layer) of 0.5-μm and p-layer of 3-μm thickness with specific doping concentrations of 1·1020 cm–3 for n-layer and 1·1018 cm–3 for p-layer allow us to achieve the maximum efficiency 29.21%. The solar cell structure provides an open circuit voltage of 1.0 V, short circuit current density of 33.15 mA/cm2 and the percentage of fill factor value of 88.03%. However, the efficiency drops drastically, if the dislocation density in i-layer is higher than 1·1014 cm–3, and unintentional doping concentration within i-layer is beyond 1.5·1016 cm–3 of the structure.


Sign in / Sign up

Export Citation Format

Share Document