scholarly journals Codon Usage Bias in Two Hemipteran Insect Species: Bemisia tabaci and Homalodisca coagulata

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jyotika Sharma ◽  
Supriyo Chakraborty ◽  
Arif Uddin

Codon bias is the nonuniform use of synonymous codons which encode the same amino acid. Some codons are more frequently used than others in several organisms, particularly in the highly expressed genes. The spectacular diversity of insects makes them a suitable candidate for analyzing the codon usage bias. Recent expansion in genome sequencing of different insect species provides an opportunity for studying the codon usage bias. Several works on patterns of codon usage bias were done on Drosophila and other related species but only few works were found in Hemiptera order. We analyzed codon usage in two Hemipteran insect species namely Bemisia tabaci and Homalodisca coagulata. Most frequent codons end with A or C at the 3rd codon position. The ENC (a measure of codon bias) value ranges from 43 to 60 (52.80) in B. tabaci but from 49 to 60 (56.69) in H. coagulata. In both insect species, a significant positive correlation was observed between A and A3%, C and C3%, and GC and GC3%, respectively. Our findings suggest that codon usage bias in two Hemipteran insect species is not remarkable and that mutation pressure causes the codon usage pattern in two Hemipteran insect species.

Author(s):  
Saif M. Khodary ◽  
Ali Mostafa Anwar

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of Coronavirus disease 2019 (COVID-19) which is an infectious disease that spread throughout the world and was declared as a pandemic by the World Health Organization (WHO). In this study, we performed a genome-wide analysis on the codon usage bias (CUB) of 13 SARS-CoV-2 isolates from different geo-locations (countries) in an attempt to characterize it, unravel the main force shaping its pattern, and understand its adaptation to Homo sapiens. Overall results revealed that, SARS-CoV-2 codon usage is slightly biased similarly to other RNA viruses. Nucleotide and dinucleotide compositions displayed a bias toward A/U content in all codon positions and CpU-ended codons preference, respectively. Eight common putative preferred codons were identified, and all of them were A/U-ended (U-ended: 7, A-ended: 1). In addition, natural selection was found to be the main force structuring the codon usage pattern of SARS-CoV-2. However, mutation pressure and other factors such as compositional constraints and hydrophobicity had an undeniable contribution. Two adaptation indices were utilized and indicated that SARS-CoV-2 is moderately adapted to Homo sapiens compared to other human viruses. The outcome of this study may help in understanding the underlying factors involved in the evolution of SARS-CoV-2 and may aid in vaccine design strategies.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Hua Feng ◽  
Joaquim Segalés ◽  
Fangyu Wang ◽  
Qianyue Jin ◽  
Aiping Wang ◽  
...  

Porcine circoviruses (PCVs) are distributed in swine herds worldwide and represent a threat to the health of domestic pigs and the profits of the swine industry. Currently, four PCV species, including PCV-1, PCV-2, PCV-3 and PCV-4, have been identified in China. Considering the ubiquitous characteristic of PCVs, the new emerged PCV-4 and the large scale of swine breeding in China, an overall analysis on codon usage bias for Chinese PCV sequences was performed by using the major proteins coding sequences (ORF1 and ORF2) to better understand the relationship of these viruses with their host. The data from genome nucleotide frequency composition and relative synonymous codon usage (RSCU) analysis revealed an overrepresentation of AT pair and the existence of a certain codon usage bias in all PCVs. However, the values of an effective number of codons (ENC) revealed that the bias was of low magnitude. Principal component analysis, ENC-plot, parity rule two analysis and correlation analysis suggested that natural selection and mutation pressure were both involved in the shaping of the codon usage patterns of PCVs. However, a neutrality plot revealed a stronger effect of natural selection than mutation pressure on codon usage patterns. Good host adaptation was also shown by the codon adaptation index analysis for all these viruses. Interestingly, obtained data suggest that PCV-4 might be more adapted to its host compared to other PCVs. The present study obtained insights into the codon usage pattern of PCVs based on ORF1 and ORF2, which further helps the understanding the molecular evolution of these swine viruses.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10450
Author(s):  
Xiaowei Huo ◽  
Sisi Liu ◽  
Yimin Li ◽  
Hao Wei ◽  
Jing Gao ◽  
...  

Background Rheum palmatum is an endangered and important medicinal plant in Asian countries, especially in China. However, there is little knowledge about the codon usage bias for R. palmatum CDSs. In this project, codon usage bias was determined based on the R. palmatum 2,626 predicted CDSs from R. palmatum transcriptome. Methods In this study, all codon usage bias parameters and nucleotide compositions were calculated by Python script, Codon W, DNA Star, CUSP of EMBOSS. Results The average GC and GC3 content are 46.57% and 46.6%, respectively, the results suggested that there exists a little more AT than GC in the R. palmatum genes, and the codon bias of R. palmatum genes preferred to end with A/T. We concluded that the codon bias in R. palmatum was affect by nucleotide composition, mutation pressure, natural selection, gene expression levels, and the mutation pressure is the prominent factor. In addition, we figured out 28 optimal codons and most of them ended with A or U. The project here can offer important information for further studies on enhancing the gene expression using codon optimization in heterogeneous expression system, predicting the genetic and evolutionary mechanisms in R. palmatum.


2021 ◽  
Vol 12 (3) ◽  
pp. 2028-2046
Author(s):  
Mallikarjun S Beelagi ◽  
Uma Bharathi Indrabalan ◽  
Sharanagouda S Patil ◽  
Suresh K P ◽  
Shiva Prasad Kollur ◽  
...  

Kyasanur Forest Disease was first evolved in the Kyasanur forest, Karnataka. The transmission of the virus has occurred from the monkey to the human by the tick vector. On the early day of viral spread, the disease was restricted to the surrounded region of Kyasanur forest, Shimoga district. But in the present days, the disease has been spreading to neighboring districts and states as well. So, this study involves estimation of codon bias among the gene C, gene E, gene prM, and gene NS5 of the KFD virus and rate of evolution with phylogenetic analysis. The codon usage analysis has revealed the moderate codon bias among all the selected genes and the role of mutation pressure in genes- C and E and natural selection in genes- prM and NS5. Also, the tMRCA age was 1942, 1982, 1975, and 1931 of genes- C, E, prM, and NS5, respectively, of the KFD virus. The integrated analysis of codon usage bias and evolutionary rate analysis signifies that both mutational pressure and natural selection among the selected genes of the KFD virus.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 912
Author(s):  
Saadullah Khattak ◽  
Mohd Ahmar Rauf ◽  
Qamar Zaman ◽  
Yasir Ali ◽  
Shabeen Fatima ◽  
...  

The ongoing outbreak of coronavirus disease COVID-19 is significantly implicated by global heterogeneity in the genome organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The causative agents of global heterogeneity in the whole genome of SARS-CoV-2 are not well characterized due to the lack of comparative study of a large enough sample size from around the globe to reduce the standard deviation to the acceptable margin of error. To better understand the SARS-CoV-2 genome architecture, we have performed a comprehensive analysis of codon usage bias of sixty (60) strains to get a snapshot of its global heterogeneity. Our study shows a relatively low codon usage bias in the SARS-CoV-2 viral genome globally, with nearly all the over-preferred codons’ A.U. ended. We concluded that the SARS-CoV-2 genome is primarily shaped by mutation pressure; however, marginal selection pressure cannot be overlooked. Within the A/U rich virus genomes of SARS-CoV-2, the standard deviation in G.C. (42.91% ± 5.84%) and the GC3 value (30.14% ± 6.93%) points towards global heterogeneity of the virus. Several SARS-CoV-2 viral strains were originated from different viral lineages at the exact geographic location also supports this fact. Taking all together, these findings suggest that the general root ancestry of the global genomes are different with different genome’s level adaptation to host. This research may provide new insights into the codon patterns, host adaptation, and global heterogeneity of SARS-CoV-2.


2011 ◽  
Vol 57 (12) ◽  
pp. 1016-1023 ◽  
Author(s):  
Xue Lian Luo ◽  
Jian Guo Xu ◽  
Chang Yun Ye

In this study, we analysed synonymous codon usage in Shigella flexneri 2a strain 301 (Sf301) and performed a comparative analysis of synonymous codon usage patterns in Sf301 and other strains of Shigella and Escherichia coli . Although there was a significant variety in codon usage bias among different Sf301 genes, there was a slight but observable codon usage bias that could primarily be attributable to mutational pressure and translational selection. In addition, the relative abundance of dinucleotides in Sf301 was observed to be independent of the overall base composition but was still caused by differential mutational pressure; this also shaped codon usage. By comparing the relative synonymous codon usage values across different Shigella and E. coli strains, we suggested that the synonymous codon usage pattern in the Shigella genomes was strain specific. This study represents a comprehensive analysis of Shigella codon usage patterns and provides a basic understanding of the mechanisms underlying codon usage bias.


2021 ◽  
pp. 1450-1458
Author(s):  
Sharanagouda S. Patil ◽  
Uma Bharathi Indrabalan ◽  
Kuralayanapalya Puttahonnappa Suresh ◽  
Bibek Ranjan Shome

Background and Aim: Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious disease in pigs causing 100% mortality in susceptible adult pigs and piglets. High mortality rate in pigs causes huge economic loss to pig farmers. CSFV has a positive-sense RNA genome of 12.3 kb in length flanked by untranslated regions at 5' and 3' end. The genome codes for a large polyprotein of 3900 amino acids coding for 11 viral proteins. The 1300 codons in the polyprotein are coded by different combinations of three nucleotides which help the infectious agent to evolve itself and adapt to the host environment. This study performed and employed various methods/techniques to estimate the changes occurring in the process of CSFV evolution by analyzing the codon usage pattern. Materials and Methods: The evolution of viruses is widely studied by analyzing their nucleotides and coding regions/ codons using various methods. A total of 115 complete coding regions of CSFVs including one complete genome from our laboratory (MH734359) were included in this study and analysis was carried out using various methods in estimating codon usage bias and evolution. This study elaborates on the factors that influence the codon usage pattern. Results: The effective number of codons (ENC) and relative synonymous codon usage showed the presence of codon usage bias. The mononucleotide (A) has a higher frequency compared to the other mononucleotides (G, C, and T). The dinucleotides CG and CC are underrepresented and overrepresented. The codons CGT was underrepresented and AGG was overrepresented. The codon adaptation index value of 0.71 was obtained indicating that there is a similarity in the codon usage bias. The principal component analysis, ENC-plot, Neutrality plot, and Parity Rule 2 plot produced in this article indicate that the CSFV is influenced by the codon usage bias. The mutational pressure and natural selection are the important factors that influence the codon usage bias. Conclusion: The study provides useful information on the codon usage analysis of CSFV and may be utilized to understand the host adaptation to virus environment and its evolution. Further, such findings help in new gene discovery, design of primers/probes, design of transgenes, determination of the origin of species, prediction of gene expression level, and gene function of CSFV. To the best of our knowledge, this is the first study on codon usage bias involving such a large number of complete CSFVs including one sequence of CSFV from India.


2018 ◽  
Author(s):  
Mohammed Alorabi ◽  
Aisha M. AlAmri ◽  
Yuiko Takebayashi ◽  
Kate J. Heesom ◽  
Matthew B. Avison

AbstractThe mobile antibiotic resistance gene blaIMP-1 is clinically important and has a synonymous AAA:AAG lysine codon usage bias of 73:27. This bias is like that seen in experimentally determined highly expressed genes in Escherichia coli and Acinetobacter baumanii, but quite different from that seen in Pseudomonas aeruginosa (26:74 AAA:AAG). Here we show that, paradoxically, shifting the AAA:AAG lysine codon bias to 8:92 in blaIMP-1 expressed from a natural promoter results in significantly more IMP-1 production in all three species. Sequential site directed mutagenesis revealed that increased IMP-1 production occurs following removal of an AAA,AAA double lysine codon and that otherwise, lysine codon usage had no observable impact on IMP-1 production. We conclude that ribosomal slippage at this poly-adenosine region reduces efficient translation of IMP-1 and that punctuating the region with guanine reduces ribosomal slippage and increases IMP-1 production.


2018 ◽  
Vol 115 (21) ◽  
pp. E4940-E4949 ◽  
Author(s):  
Idan Frumkin ◽  
Marc J. Lajoie ◽  
Christopher J. Gregg ◽  
Gil Hornung ◽  
George M. Church ◽  
...  

Although the genetic code is redundant, synonymous codons for the same amino acid are not used with equal frequencies in genomes, a phenomenon termed “codon usage bias.” Previous studies have demonstrated that synonymous changes in a coding sequence can exert significantciseffects on the gene’s expression level. However, whether the codon composition of a gene can also affect the translation efficiency of other genes has not been thoroughly explored. To study how codon usage bias influences the cellular economy of translation, we massively converted abundant codons to their rare synonymous counterpart in several highly expressed genes inEscherichia coli. This perturbation reduces both the cellular fitness and the translation efficiency of genes that have high initiation rates and are naturally enriched with the manipulated codon, in agreement with theoretical predictions. Interestingly, we could alleviate the observed phenotypes by increasing the supply of the tRNA for the highly demanded codon, thus demonstrating that the codon usage of highly expressed genes was selected in evolution to maintain the efficiency of global protein translation.


2021 ◽  
Author(s):  
Yanan Fu ◽  
Yanping Huang ◽  
Jingjing Rao ◽  
Feng Zeng ◽  
Ruiping Yang ◽  
...  

Abstract The outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, spread across hosts from humans to animals, transmitting particularly effectively in mink. How SARS-CoV-2 selects and evolves in the host, and the differences in the evolution of different animals are still unclear. To analysis the mutation and codon usage bias of SARS-CoV-2 in infected humans and animals. The SARS-CoV-2 sequence in mink (Mink-SARS2) and binding energy with receptor were calculated compared with human. The relative synonymous codon usage of viral encoded gene was analyzed to characterize the differences and the evolutionary characteristics. A synonymous codon usage analysis showed that SARS-CoV-2 is optimized to adapt in the animals in which it is currently reported, and all of the animals showed decreased adaptability relative to that of humans, except for mink. The neutrality plot showed that the effect of natural selection on different SARS-CoV-2 sequences is stronger than mutation pressure. A binding affinity analysis indicated that the spike protein of the SARS-CoV-2 variant in mink showed a greater preference for binding with the mink receptor ACE2 than with the human receptor, especially as the mutation Y453F and N501T in Mink-SARS2 lead to improvement of binding affinity for mink receptor. In summary, mutations Y453F and N501T in Mink-SARS2 lead to improvement of binding affinity with mink receptor, indicating possible natural selection and current host adaptation. Monitoring the variation and codon bias of SARS-CoV-2 provides a theoretical basis for tracing the epidemic, evolution and cross-species spread of SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document