scholarly journals Adsorption Isotherm And Kinetic Models For Removal Of Methyl Orange And Remazol Brilliant Blue R By Coconut Shell Activated Carbon

2021 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Hee Tian Hii

Adsorption technology is one of the efficient and facile method used for wastewater treatment. In this research, coconut shell, an agricultural solid waste was converted into activated carbon via furnace induced and zinc chloride chemical activation techniques. The activated carbon was prepared at activation temperature of 600°C. Anionic dyes, Methyl Orange (MO) and Remazol Brilliant Blue R (RBBR) have been selected due to their harmful effect to the environmental and human. Various effect of parameter such as initial dye concentration, initial pH, adsorbent dosage and agitation speed in batch system were investigated to obtain the optimum condition for both dye adsorption on activated carbon. The optimum dye removal efficiency was around 99% when 5g/L of activated carbon was used. Pseudo-second-order model was the best fitted model with highest correlation compared to other kinetic models. The adsorption behaviour of MO was perfectly presented by the Freundlich model while RBBR was well described by Langmuir model. The maximum adsorption capacity for MO was 59.17mg/g and RBBR was 35.09mg/g. Fourier-transform infrared spectroscopy (FTIR) was utilised to analyse the chemical characteristics of activated carbon before and after adsorption.

2020 ◽  
Vol 28 ◽  
pp. 100426 ◽  
Author(s):  
Mohd Azmier Ahmad ◽  
Muhammad Aswar Eusoff ◽  
Peter Olusakin Oladoye ◽  
Kayode Adesina Adegoke ◽  
Olugbenga Solomon Bello

2021 ◽  
Author(s):  
Abdallah Reghioua ◽  
Djamel Barkat ◽  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
S Rangabhashiyam ◽  
...  

Abstract A magnetic Schiff’s base chitosan-glutaraldehyde/Fe3O4 composite (CHT-GLA/ZnO/Fe3O4) was developed by incorporating zinc oxide (ZnO) nanoparticles into its structure to prepare an efficient adsorbent for the removal of remazol brilliant blue R (RBBR) dye. The CHT-GLA/ZnO/Fe3O4 was characterized by the following methods: CHN, BET, FTIR, XRD, SEM-EDX, pHpzc, and potentiometric titrations. Box-Behnken design based on response surface methodology was used to optimize the effects of the A: ZnO nanoparticles loading (0–50%), B: dose (0.02–0.1 g), C: pH (4–10), D: temperature (30–60°C), and time E: (10–60 min) on the synthesis of the magnetic adsorbent and the RBBR dye adsorption. The experimental data of kinetics followed the pseudo-second order model, while isotherms showed better fit to Freundlich and Temkin models. The maximum adsorption capacity of the target nanocomposite (CHT-GLA/Fe3O4 containing 25% ZnO or CHT-GLA/ZnO/Fe3O4-25) was reached of 176.6 mg/g at 60°C. The adsorption mechanism of RBBR onto CHT-GLA/ZnO/Fe3O4 nanocomposite can be attributed to multi-interactions including electrostatic attractions, hydrogen bonding, Yoshida H-bonding, and n-π interactions. This study offers a promising hybrid nanobiomaterial adsorbent in environmental nanotechnology to separate and remove the contaminants such as organic dyes from wastewater.


2016 ◽  
Vol 22 (2) ◽  
pp. 167-179 ◽  
Author(s):  
Didem Özçimen ◽  
Tufan Salan

In this study, adsorbents were produced from sewage sludge via chemical and thermal activation processes. Experiments were carried out in a tubular furnace at the heating rate of 20?C min-1 and temperature of 550 ?C with a nitrogen flow rate of 400 mL min-1 for 1 h. Dye adsorption experiments were performed with Remazol Brilliant Blue R for its several concentrations under batch equilibrium conditions by comparing sewage sludge based adsorbents with raw material and a commercial activated carbon. Maximum adsorption capacities of carbonized sewage sludge (CSWS) and activated sewage sludge (ASWS) were found as 7.413 mg g-1 and 9.376 mg g-1 for 100 mg L-1 dye solution, whereas commercial activated carbon had a capacity of 11.561 mg g-1. Freundlich and Langmuir isotherms were used to explain the adsorption mechanism together with pseudo-first-order and pseudo-second-order kinetic models. Langmuir isotherm, which had adsorption capacities of 34.60 mg g-1 (CSWS) and 72.99 mg g-1 (ASWS), provided better fit to the equilibrium data than that of Freundlich isotherm. Pseudo second-order, model which had adsorption capacities of 7.451 mg g-1 (CSWS) and 9.319 mg g-1 (ASWS), was very favorable to explain the adsorption kinetics of the dye with high regression coefficients.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Azhar Ahmad ◽  
Safarudin Gazali Herawan ◽  
Ahmad Anas Yusof

The adsorption of remazol brilliant blue R (RBBR) dye on pinang frond based activated carbon (PF-AC) was investigated in a batch process. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. The adsorption equilibrium and kinetic were found to follow Freundlich isotherm models and pseudo-second-order kinetic model, respectively. The mechanism of the adsorption process was found from the intraparticle diffusion model. Result from adsorption thermodynamic show that interaction for RBBR dye was found to be feasible, nonspontaneous, and endothermic. The results indicated that the PF-AC is very effective for the RBBR adsorption from aqueous solution.


2019 ◽  
Author(s):  
Chem Int

Activated carbon was prepared from molasses, which are natural precursors of vegetable origin resulting from the sugar industry. A simple elaboration process, based on chemical activation with phosphoric acid, was proposed. The final product, prepared by activation of molasses/phosphoric acid mixture in air at 500°C, presented high surface area (more than 1400 m2/g) and important maximum adsorption capacity for methylene blue (625 mg/g) and iodine (1660 mg/g). The activated carbon (MP2(500)) showed a good potential for the adsorption of Cr(VI), Cu(II) and Pb(II) from aqueous solutions. The affinity for the three ions was observed in the following order Cu2+ Cr6+ Pb2+. The process is governed by monolayer adsorption following the Langmuir model, with a correlation coefficient close to unity.


2015 ◽  
Vol 25 (3) ◽  
pp. 25-34 ◽  
Author(s):  
Laura Alicia Ramírez Llamas ◽  
Araceli Jacobo Azuara ◽  
J. Merced Martínez Rosales

In this paper, layered double hydroxides (LDH) were synthesized and characterized using techniques of Physisorption of Nitrogen, Infrared, Temperature Programmed Desorption, X-Ray Diffraction, TGA and Immersion Microcalorimetry, in order to determine the basic properties of the adsorbent. The methyl orange (MO) is used as a dye and as a result, it is frequently found in effluents from textile industries. The dye adsorption isotherms on LDH were studied as function of pH and temperature. The maximum adsorption capacity of methyl orange on LDH was carried out at pH 5, and the minimum adsorption capacity at pH 11, being 40.2 mg/g and 22.1 mg/g, respectively. Furthermore, the suitable temperature to promote the adsorption of methyl orange on LDH was at 25 °C, as at 35 °C shows a significant decrease. 


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Mojoudi ◽  
N. Mirghaffari ◽  
M. Soleimani ◽  
H. Shariatmadari ◽  
C. Belver ◽  
...  

AbstractThe purpose of this study was the preparation, characterization and application of high-performance activated carbons (ACs) derived from oily sludge through chemical activation by KOH. The produced ACs were characterized using iodine number, N2 adsorption-desorption, Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The activated carbon prepared under optimum conditions showed a predominantly microporous structure with a BET surface area of 2263 m2 g−1, a total pore volume of 1.37 cm3 g−1 and a micro pore volume of 1.004 cm3 g−1. The kinetics and equilibrium adsorption data of phenol fitted well to the pseudo second order model (R2 = 0.99) and Freundlich isotherm (R2 = 0.99), respectively. The maximum adsorption capacity based on the Langmuir model (434 mg g−1) with a relatively fast adsorption rate (equilibrium time of 30 min) was achieved under an optimum pH value of 6.0. Thermodynamic parameters were negative and showed that adsorption of phenol onto the activated carbon was feasible, spontaneous and exothermic. Desorption of phenol from the adsorbent using 0.1 M NaOH was about 87.8% in the first adsorption/desorption cycle and did not decrease significantly after three cycles. Overall, the synthesized activated carbon from oily sludge could be a promising adsorbent for the removal of phenol from polluted water.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2498 ◽  
Author(s):  
Marwa Elkady ◽  
Hassan Shokry ◽  
Hesham Hamad

Nano-activated carbon (NAC) prepared from El-Maghara mine coal were modified with nitric acid solution. Their physico-chemical properties were investigated in terms of methylene blue (MB) adsorption, FTIR, and metal adsorption. Upon oxidation of the ACS with nitric acid, surface oxide groups were observed in the FTIR spectra by absorption peaks at 1750–1250 cm−1. The optimum processes parameters include HNO3/AC ratio (wt./wt.) of 20, oxidation time of 2 h, and the concentration of HNO3 of 10% reaching the maximum adsorption capacity of MB dye. Also, the prepared NAC was characterized by SEM, EDX, TEM, Raman Spectroscopy, and BET analyses. The batch adsorption of MB dye from solution was used for monitoring the behavior of the most proper produced NAC. Equilibrium isotherms of MB dye adsorption on NAC materials were acquired and the results discussed in relation to their surface chemistry. Langmuir model recorded the best interpretation of the dye adsorption data. Also, NAC was evaluated for simultaneous adsorption of six different metal ions (Fe2+, Ni2+, Mn2+, Pb2+, Cu2+, and Zn2+) that represented contaminates in petrochemical industrial wastewater. The results indicated that the extracted NAC from El-Maghara mine coal is considered as an efficient low-cost adsorbent material for remediation in both basic dyes and metal ions from the polluted solutions.


2014 ◽  
Vol 1043 ◽  
pp. 219-223 ◽  
Author(s):  
Noor Shawal Nasri ◽  
Jibril Mohammed ◽  
Muhammad Abbas Ahmad Zaini ◽  
Usman Dadum Hamza ◽  
Husna Mohd. Zain ◽  
...  

Concern about environmental protection has increased over the years and the presence of volatile organic compounds (VOCs) in water poses a threat to the environment. In this study, coconut shell activated carbon (PHAC) was produced by potassium hydroxide activation via microwave for benzene and toluene removal. Equilibrium data were fitted to Langmuir, Freundlich and Tempkin isotherms with all the models having R2 > 0.94. The equilibrium data were best fitted by Langmuir isotherm, with maximum adsorption capacity of 212 and 238mg/g for benzene and toluene, respectively. The equilibrium parameter (RL) falls between 0 and 1 confirming the favourability of the Langmuir model. Pseudo-second-order kinetic model best fitted the kinetic data. The PHAC produced can be used to remediate water polluted by VOCs.


Sign in / Sign up

Export Citation Format

Share Document