scholarly journals Deposition and Mineralogical Characteristics of Atmospheric Dust in relation to Land Use and Land Cover Change in Delhi (India)

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bablu Kumar ◽  
Kopal Verma ◽  
Umesh Kulshrestha

This study highlights that the increasing urbanization and industrialization in Delhi are responsible for higher fluxes of atmospheric dust and its chemical constituents. Delhi has experienced a drastic change in land use and land cover area during the past two decades. Road lengths of the city have increased by 76% from 1985 to 2011. The number of mobile vehicles has reached 80,52,508 in 2014 from 24,32,295 in 1994. The industrial units in Delhi have increased by 39.54% in 2011 as compared to 1994 value. Atmospheric dust which is originated from soil in this region becomes carbon rich due to interaction of suspended soil with atmospheric pollutants. Emissions of carbonaceous aerosols from coal and petroleum combustions are mainly responsible for silica dominated soil dust transforming into carbon rich particulate matter. Such dust may play very important role in the atmosphere having significant influence on human health, global warming, climate change, radiative forcing, visibility, and cloud formation. It is expected that if the rate of development remains the same, green cover of the city invariably will be sized down in order to meet the demand of housing, transportation, industries, and so forth in proportion to the rising population.

2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Juliana Nazareth de Lana ◽  
Márcio de Oliveira ◽  
Vanessa Romario de Paula ◽  
Cézar Henrique Barra Rocha

Changes in the land use and land cover in areas adjacent to water reservoirs directly affect the quality of this water. This research presents a study on the water quality in the basin of one of the most important public water supply reservoirs in the city of Juiz de Fora, Minas Gerais. The main objective of this study was to analyze the behavior of limnological parameters and the correlation with land use and land cover in the contribution basin of the Doutor João Penido reservoir (CBJPR). The methodology was based on the analysis of water quality parameters, related to water samples collected from 2012 to 2015. Six sampling points were chosen from different locations: spring, medium course, main tributaries of the reservoir and the reservoir catchment. The parameters analyzed were turbidity, total solids (TS), oxygen consumed (OC), dissolved oxygen (DO), electrical conductivity, total nitrogen (TN), total phosphorus (TP), E. Coli, temperature, pH and total dissolved solids (TDS). The Kendall’s tau test was used to analyze the correlations between the parameters of water quality, land use and land cover in the CBJPR. In general, measured parameters showed better results in spring and in reservoir catchment, showing a worse quality of the water along the tributaries and the dilution power of the reservoir. The correlations pointed to the need for protection and preservation of forests in strategic locations to ensure good water quality.


Author(s):  
Андрій Юрійович Шелестов ◽  
Алла Миколаївна Лавренюк ◽  
Богдан Ялкапович Яйлимов ◽  
Ганна Олексіївна Яйлимова

Ukraine is an associate member of the European Union and in the coming years it is expected that all data and services already used by EU countries will be available to Ukraine. The lack of quality national products for assessing the development and planning of urban growth makes it impossible to assess the impact of cities on the environment and human health. The first steps to create such products for the cities of Ukraine were initiated within the European project "SMart URBan Solutions for air quality, disasters and city growth" (SMURBS), in which specialists from the Space Research Institute of NAS of Ukraine and SSA of Ukraine received the first city atlas for the Kyiv city, which was similar to the European one. However, the resulting product had significantly fewer types of land use than the European one and therefore the question of improving the developed technology arose. The main purpose of the work is to analyze the existing technology of European service Urban Atlas creation and its improvement by developing a unified algorithm for building an urban atlas using all available open geospatial and satellite data for the cities of Ukraine. The development of such technology is based on our own technology for classifying satellite time series with a spatial resolution of 10 meters to build a land cover map, as well as an algorithm for unifying open geospatial data to urban atlases Copernicus. The technology of construction of the city atlas developed in work, based on the intellectual model of classification of a land cover, can be extended to other cities of Ukraine. In the future, the creation of such a product on the basis of data for different years will allow to assess changes in land use and make a forecast for further urban expansion. The proposed information technology for constructing the city atlas will be useful for assessing the dynamics of urban growth and closely related social and economic indicators of their development. Based on it, it is also possible to assess indicators of achieving the goals of sustainable development, such as 11.3.1 "The ratio of land consumption and population growth." The study shows that the city atlas obtained for the Kyiv city has a high level of quality and has comparable land use classes with European products. It indicates that such a product can be used in government decision-making services.


2019 ◽  
Vol 11 (24) ◽  
pp. 7014 ◽  
Author(s):  
Andrzej Biłozor ◽  
Szymon Czyża ◽  
Tomasz Bajerowski

Changes in land use, which accompany the development of towns, generate a transitional zone on the border between areas of urban and rural use, which—due to its complex (unspecified, fuzzy) land use—cannot be identified either as a rural or an urban area. In order to prevent the unplanned development, it should go according to plan, in line with the spatial order principles, making a coherent whole, taking into account all functional, socio-economic, cultural, as well as aesthetic factors and requirements. This paper describes studies and analyses of the fuzzy set theory applicability in studies of land use in areas around towns. The main aim of the study was to present the methodology, which employs fuzzy logic to identify and locate a transitional zone between rural and urban areas. This study dealt with the transitional zone at the junction of the urban and rural area and its parameters, which affect the type of land use. The attributes of the transitional zone were defined based on an analysis of current land use methods in areas under direct urbanisation pressure. The study was conducted in the city of Olsztyn (Poland) and on its outskirts, directly exposed to the impact of the developing city, with an area of 202.4 km2, within an 8-km radius of the city centre. The study determined the impact of individual forms of land use on the development of urban or rural use. The degree of each type of use—urban or rural—allowed for developing a fuzzy town and country model, identifying the urban investment border and its spatial dispersion, as well as identifying and locating the transitional zone between urban and rural areas. Moreover, land cover models based on the Corine land cover (CLC) data as well as high-resolution layers (HRL) impervious and canopy data were developed. The borders of urban investment determined on the basis of the fuzzy set theory assumptions, CLC, and HRL data were also identified and verified.


2020 ◽  
Vol 12 (22) ◽  
pp. 9529
Author(s):  
Dohee Kim ◽  
Wonhyeop Shin ◽  
Heejoon Choi ◽  
Jihwan Kim ◽  
Youngkeun Song

Anthropogenic land use has led to the loss and fragmentation of native habitats and disruption to ecosystem processes, resulting in a decline in landscape connectivity and biodiversity. Here, in order to find the potentials of improvements in ecological connectivity, we provide a spatial analysis to present differences in ecological connectivity based on land cover maps and urban habitat maps in Suwon city, Republic of Korea. We generated two permeability maps for use in a network analysis, one being land cover and the other urban habitat, including a 5-km buffer area from the city boundary. We then determined the current-flow betweenness centrality (CFBC) for each map. Our results indicate that forests are typically the most highly connected areas in both maps. However, in the land cover map results, nearly all high-priority areas were in the mountainous region (CFBC value: 0.0100 ± 0.0028), but the urban habitat indicated that grasslands and rivers within the city also significantly contribute to connectivity (CFBC value: 0.0071 ± 0.0022). The CFBC maps developed here could be used as a reference when introducing green infrastructure in cities. Before establishing ecological networks for urban areas, future work should integrate the land use and ecological data of different administrative districts with continuous ecological connection.


2016 ◽  
Vol 18 (2) ◽  
pp. 95 ◽  
Author(s):  
Irmadi Nahib

<p class="JudulABSInd"><strong>ABSTRAK</strong></p><p class="abstrak">Salah satu indikator perkembangan fisik wilayah kota dapat diidentifikasi melalui fenomena perubahan tutupan lahan bervegetasi menjadi lahan terbangun. Perubahan lahan tersebut dapat berdampak terhadap penurunan kualitas lingkungan, akibat berkurangnya ruang terbuka hijau. Kota Semarang dengan visi terwujudnya Semarang sebagai kota perdagangan dan jasa yang berbudaya menuju masyarakat sejahtera, merupakan  wilayah yang rentan mengalami perubahan penggunaan lahan yang cenderung kearah lahan terbangun. Penelitian ini mengintegrasikan model <em>Cellular Automata</em> (CA) dan regresi logistik biner untuk memprediksi dinamika lahan terbangun di Kota Semarang. Citra yang digunakan adalah Citra Ikonos 2002, Ikonos 2006 dan <em>Quic</em><em>kbird</em> 2012. Model CA pada penelitian ini digunakan untuk memprediksi sebaran penutup lahan tahun 2022 dan 2032 dengan mempertimbangkan jarak terhadap jalan, jarak terhadap sungai, jarak terhadap lahan terbangun, ketinggian, kepadatan penduduk, <em>evidence likelihood </em>perubahan lahan dan indeks pengembangan kelurahan yang diakomodasi dalam peta sub-model transisi hasil model regresi logistik biner. Hasil penyusunan model ini adalah peta prediksi penutup lahan dengan akurasi 78,21 % validitas model yang dihasilkan dapat dikategorikan “<em>moderate</em>” mengindikasikan bahwa peta yang dihasilkan dapat digunakan. Hasil pemodelan menunjukkan bahwa Kota Semarang pada tahun 2022 terjadi pertambahan luas lahan terbangun rata-rata 284 ha/tahun dan pada tahun 2032 rata-rata 226 ha/tahun.</p><p><strong><em>Kata </em></strong><strong><em>k</em></strong><strong><em>unci</em></strong><em>: </em><em>cellular automata, pemodelan, regresi logistik biner, lahan terbangun</em></p><p class="judulABS"><em><strong>ABSTRACT</strong></em></p><p class="Abstrakeng">One indicator of the physical development of the city can be identified by phenomenon of land expansion, vegetated land cover changes to be built-up area. The land use changes can impact to environmental degradation, due to reduced green open space. Semarang as a city of trade and services cultured toward a prosperous community, a region that is vulnerable to changes in land use tends toward small plots. This research integrates the model of Cellular Automata (CA) and binary logistic regression to predict the dynamics of builtup area in the city of Semarang. The image used is a Ikonos imagery (2002), Ikonos imagery (2006) and Quickbird (2012). Model CA in this research use to predict the distribution of land cover 2022 and 2032 with respect to: distance to roads, the distance to the river, the distance to the built-up area, elevation, population density, evidence likelihood of land use change and development villages index were accommodated in the map sub-model transition binary logistic regression model results. The results of this study are predictive maps of built-up area  with an accuracy of 78,21 % so that the validity of the resulting model can be categorized as "moderate", indicates that the probability map is valid. Modeling results showed that Semarang City in 2022 predicted rate of increase of  built-up area an average 284  ha / year and in 2032 rate of increase of built-up area an average 226 ha / year.</p><p><strong><em>Keywords</em></strong><em>: cellular automata, modelling, binary logistic regression, built-up area</em></p>


2014 ◽  
Vol 14 (3) ◽  
pp. 1413-1422 ◽  
Author(s):  
E. N. Kirillova ◽  
A. Andersson ◽  
J. Han ◽  
M. Lee ◽  
Ö. Gustafsson

Abstract. High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17–80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8–1.1 m2 g−1), than from other source regions (0.3–0.8 m2 g−1). However, this effect corresponds to only 2–10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30–50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.


Author(s):  
H. M. Imran ◽  
Anwar Hossain ◽  
A. K. M. Saiful Islam ◽  
Ataur Rahman ◽  
Md Abul Ehsan Bhuiyan ◽  
...  

AbstractUrbanization leads to the construction of various urban infrastructures in the city area for residency, transportation, industry, and other purposes, which causes major land use change. Consequently, it substantially affects Land Surface Temperature (LST) by unbalancing the surface energy budget. Higher LST in city areas decreases human thermal comfort for the city dwellers and affects the urban environment and ecosystem. Therefore, a comprehensive investigation is needed to evaluate the impact of land use change on the LST. Remote Sensing (RS) and Geographic Information System (GIS) techniques were used for the detailed investigation. RS data for the years 1993, 2007 and 2020 during summer (March–May) in Dhaka city were used to prepare land cover maps, analyze LST, generate hazard maps and relate the land cover change with LST by using GIS. The results show that the built-up area in Dhaka city increased by 67% from 1993 to 2020 by replacing lowland mainly, followed by vegetation, bare soil and water bodies. LSTs found in the study area were ranged from 23.26 to 39.94 °C, 23.69 to 43.35 °C and 24.44 to 44.58 °C for the years 1993, 2007 and 2020, respectively. The increases of spatially distributed maximum and mean LST were found 4.62 °C and 6.43 °C, respectively, for the study period of 27 years while the change in minimum LST was not substantial. LST increased by around 0.24 °C per year and human thermal discomfort shifted from moderate to strong heat stress for the total study period due to the increase of built-up and bare lands. This study also shows that normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were negatively correlated with LST while normalized difference built-up Index (NDBI) and normalized difference built-up Index (NDBAI) were positively correlated with LST. The methodology developed in this study can be adapted to other cities around the globe.


Sign in / Sign up

Export Citation Format

Share Document