scholarly journals A Natural Flavonoid Glucoside, Icariin, Regulates Th17 and Alleviates Rheumatoid Arthritis in a Murine Model

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Liqun Chi ◽  
Wenyuan Gao ◽  
Xiangrong Shu ◽  
Xin Lu

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that causes deformity of the joints and physical disability. Icariin, a natural flavonoid glucoside isolated from plants in theEpimediumfamily, has been proven to have various pharmacological activities. A recent study showed that icariin suppressed cartilage and bone degradation in mice of collagen-induced arthritis. However, the mechanism needs to be further investigated. In our current study, we found that icariin reduced the arthritis score and the incidence of arthritis compared with that in mice treated with water. Icariin inhibits the expression of various osteoclastogenic markers, such asβ3 integrin, cathepsin K, and MMP9in vitro. Icariin treatment in mice with CIA also resulted in less number of Th17 cells and decreased ratio of CD4+IL-17+cells. The alleviated arthritis score and incidence of arthritis and reduced serum levels of IgG2a induced by icariin were abolished with additional IL-17 administration. Furthermore, icariin inhibited STAT3 activation in T cells and STAT3 inhibitor resulted in decreased IL-17 production and alleviated RA. In conclusion, icariin decreases Th17 cells and suppresses the production of IL-17, which contributes to the alleviated rheumatoid arthritis, through the inhibition of STAT3 activation.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 934.3-934
Author(s):  
M. Kim ◽  
Y. Choe ◽  
H. Lee ◽  
Y. H. Cheon ◽  
S. I. Lee

Background:Histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP) stimulates cancer progression and allergic responses. Increased expression of HRF/TCTP occurs in joints of rheumatoid arthritis (RA) patients, but the role of HRF/TCTP in RA remains undefinedObjectives:In this study, we explored the pathogenic significance of HRF/TCTP and evaluated therapeutic effects of HRF/TCTP blockade in RA.Methods:HRF/TCTP transgenic (TG) and knockdown (KD) mice with collagen-induced arthritis (CIA) were used to determine experimental phenotypes of RA. HRF/TCTP levels were measured in sera and joint fluids in patients with RA and compared to those with osteoarthritis, ankylosing spondylitis, Behcet disease, and healthy controls. HRF/TCTP expression was also assessed in synovium and fibroblast-like synoviocytes (FLS) obtained from RA or OA patients. Finally, we assessed effects of HRF/TCTP and dimerized HRF/TCTP binding peptide-2 (dTBP2), an inhibitor of HRF/TCTP, in RA-FLS and CIA mice.Results:Our clinical, radiological, histological, and biochemical analyses indicate that inflammatory responses and joint destruction were increased in HRF/TCTP TG mice, and decreased in KD mice compared to wild-type littermates. HRF/TCTP levels were higher in sera, synovial fluid, synovium, and FLS of patients with RA than in control groups. Serum levels of HRF/TCTP correlated well with disease activity in RA. Tumor-like aggressiveness of RA-FLS was exacerbated by HRF/TCTP stimulation and ameliorated by dTBP2 treatment. dTBP2 exerted protective and therapeutic effects in CIA mice, and had no detrimental effect in a murine tuberculosis model.Conclusion:Our results indicate that HRF/TCTP represents a novel biomarker and therapeutic target for diagnosis and treatment of RA.References:N/AAcknowledgments :National Research Foundation of KoreaKorea Health Industry Development InstituteDisclosure of Interests:None declared


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Guoyu Yin ◽  
Heping Zhao ◽  
Hanzhi Ling ◽  
Zhen Xie ◽  
...  

AbstractIn inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.


2019 ◽  
Author(s):  
Shutong Li ◽  
Hongxing Wang ◽  
Hui Wu ◽  
Guoqing Zhang ◽  
Xiaotian Chang

Abstract Background Regulatory T (Treg) cells have anti-inflammatory and anti-autoimmune functions. The proportion and functions of Treg cells are perturbed in rheumatoid arthritis (RA) patients. Methods Human Treg cells were induced to amplify in vitro and cocultured with RA synovial fibroblast cells (RASFs). The proliferation and apoptosis of RASFs were determined by the cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. Human Treg cells were also injected to collagen-induced arthritis (CIA) rats via the tail vein. Changes in lymphocyte subtypes and cytokines in the peripheral blood and spleen were observed by flow cytometry. Results After coculture with the Treg cells, the proliferation of RA synovial fibroblast cells decreased (p<0.01), and the rate of apoptosis increased (p=0.037). The human Treg cells were injected into the tail veins of collagen-induced arthritis (CIA) rats. The severity of the CIA was reduced (p<0.01) following the injection, the percentages of rat endogenous Treg cells in the peripheral blood and spleen increased significantly (p=0.007 and p<0.01, respectively), and the proportion of B cells decreased (p=0.031). The levels of interleukin IL-5 and IL-6 and the Th1/Th2 ratio in the peripheral blood were significantly decreased (p=0.013, 0.009 and 0.012, respectively). The number of NK cells and the levels of IL-4, IL-13, TNF-α, IFN-γ and GM-CSF in the peripheral blood and spleen did not change significantly. Conclusion These results suggest that exogenous Treg cells play a therapeutic role in RA and CIA. Treg cell treatment could serve as a therapy for RA.


2020 ◽  
Vol 21 (9) ◽  
pp. 3230
Author(s):  
Hyun Jung Yoo ◽  
Won Chan Hwang ◽  
Do Sik Min

Phospholipase D1 (PLD1) plays a crucial role in various inflammatory and autoimmune diseases. Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease. However, the role of PLD1 in the pathogenesis of RA remains unknown. Here, we first investigated the role and effects of PLD1 in collagen-induced arthritis (CIA) and found that genetic and pharmacological inhibition of PLD1 in DBA1/J mice with CIA reduced the incidence of CIA, decreased the clinical score, and abrogated disease symptoms including infiltration of leukocytes, synovial inflammation, bone erosion, and cartilage destruction. Moreover, ablation and inhibition of PLD1 suppressed the production of type II collagen-specific IgG2a autoantibody and proinflammatory cytokines, accompanied by an increase in the regulatory T (Treg) cell population and a decrease in the Th17 cell population in CIA mice. The PLD1 inhibitor also promoted differentiation of Treg cells and suppressed differentiation of Th17 cells in vitro. Furthermore, the PLD1 inhibitor attenuated pathologic bone destruction in CIA mice by suppressing osteoclastogenesis and bone resorption. Thus, our findings indicate that the targeting of PLD1 can ameliorate CIA by modulating the imbalance of Treg and Th17 cells and suppressing osteoclastogenesis, which might be a novel strategy to treat autoimmune diseases, such as RA.


2017 ◽  
Vol 44 (6) ◽  
pp. 748-756 ◽  
Author(s):  
Louisa Jeffery ◽  
Helena L. Fisk ◽  
Philip C. Calder ◽  
Andrew Filer ◽  
Karim Raza ◽  
...  

Objective.To determine whether levels of plasma n-3 polyunsaturated fatty acids are associated with response to antitumor necrosis factor (anti-TNF) agents in rheumatoid arthritis (RA), and whether this putative effect may have its basis in altering anti-TNF–driven Th17 cell differentiation.Methods.Plasma was collected at baseline and after 3 months of anti-TNF treatment in 22 patients with established RA, and fatty acid composition of the phosphatidylcholine (PC) component was measured. CD4+CD25− T cells and monocytes were purified from the blood of healthy donors and cocultured in the presence of anti-CD3, with or without etanercept (ETN), eicosapentaenoic acid (EPA), or the control fatty acid, linoleic acid (LA). Expression of interleukin 17 and interferon-γ was measured by intracellular staining and flow cytometry.Results.Plasma PC EPA levels and the EPA/arachidonic acid ratio correlated inversely with change in the Disease Activity Score at 28 joints (DAS28) at 3 months (−0.51, p = 0.007 and −0.48, p = 0.01, respectively), indicating that higher plasma EPA was associated with a greater reduction in DAS28. Plasma PC EPA was positively associated with European League Against Rheumatism response (p = 0.02). An increase in Th17 cells post-therapy has been associated with nonresponse to anti-TNF. ETN increased Th17 frequenciesin vitro. Physiological concentrations of EPA, but not LA, prevented this.Conclusion.EPA status was associated with clinical improvements to anti-TNF therapyin vivoand prevented the effect of ETN on Th17 cellsin vitro. EPA supplementation might be a simple way to improve anti-TNF outcomes in patients with RA by suppressing Th17 frequencies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dahu Qi ◽  
Hui Liu ◽  
Xuying Sun ◽  
Danni Luo ◽  
Meipeng Zhu ◽  
...  

Osteoporosis is characterized by bone loss and destruction of trabecular architecture, which greatly increases the burden on the healthcare system. Excessive activation of osteoclasts is an important cause of osteoporosis, and suppression of osteoclastogenesis is helpful for the treatment of osteoporosis. Pristimerin, a natural compound, possesses numerous pharmacological effects via inactivating the NF-κB and MAPK pathways, which are closely related to osteoclastogenesis process. However, the relationship between Pristimerin and osteoclastogenesis requires further investigation. In this research, we examined the effect of Pristimerin on osteoclastogenesis and investigated the related mechanisms. Our results showed Pristimerin inhibited RANKL-induced osteoclast differentiation and osteoclastic bone resorption in vitro, with decreased expression of osteoclastogenesis-related markers including c-Fos, NFATc1, TRAP, Cathepsin K, and MMP-9 at both mRNA and protein levels. Furthermore, Pristimerin suppressed NF-κB and MAPK signaling pathways, reduced reactive oxygen species (ROS) production and activated the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling during osteoclastogenesis. Our in vivo experiments showed that Pristimerin remarkably ameliorated ovariectomy-induced bone loss, reduced serum levels of TNF-α, IL-1β, IL-6, and RANKL, and increased serum level of osteoprotegerin (OPG). Therefore, our research indicated that Pristimerin is a potential chemical for the treatment of osteoporosis.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Paola Di Benedetto ◽  
Piero Ruscitti ◽  
Onorina Berardicurti ◽  
Noemi Panzera ◽  
Nicolò Grazia ◽  
...  

Abstract Objective During rheumatoid arthritis (RA), the angiogenic processes, occurring with pannus-formation, may be a therapeutic target. JAK/STAT-pathway may play a role and the aim of this work was to investigate the inhibiting role of a JAK-inhibitor, tofacitinib, on the angiogenic mechanisms occurring during RA. Methods After ethical approval, JAK-1, JAK-3, STAT-1, STAT-3 and VEGF expression was evaluated on RA-synovial-tissues. In vitro, endothelial cells (ECs), stimulated with 20 ng/ml of VEGF and/or 1 μM of tofacitinib, were assessed for tube formation, migration and proliferation, by Matrigel, Boyden chamber assay and ki67 gene-expression. In vivo, 32 mice received collagen (collagen-induced arthritis (CIA)) and 32 mice PBS (control). At day 19, CIA and controls mice were divided: 16 mice receiving vehicle and 16 mice receiving tofacitinib. At day 35, the arthritis score, the thickness of paw joints and the serum levels of VEGF and Ang-2 were evaluated. Results The expression of JAK-1, JAK-3, STAT-1, STAT-3 and VEGF in synovial tissue of RA-patients were significantly higher than healthy controls. In vitro, tofacitinib inhibited the ECs ability to form vessels, to proliferate and to migrate. In vivo, administration of tofacitinib prevented the increase of the arthritis score, the paw thickness, the synovial vessels and VEGF and Ang-2 serum-accumulation, when compared to CIA without tofacitinib. Conclusions We explored the anti-angiogenic role of tofacitinib, reporting its ability to inhibit in vitro the angiogenic mechanisms of ECs and in vivo the formation of new synovial vessels, occurring in CIA model. These findings suggest that the therapeutic effect of tofacitinib during RA may be also related to its anti-angiogenic activity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xinyu Wu ◽  
Dongwei Zhu ◽  
Jie Tian ◽  
Xinyi Tang ◽  
Hongye Guo ◽  
...  

The results of recent studies have shown that granulocytic-myeloid derived suppressor cells (G-MDSCs) can secrete exosomes that transport various biologically active molecules with regulatory effects on immune cells. However, their roles in autoimmune diseases such as rheumatoid arthritis remain to be further elucidated. In the present study, we investigated the influence of exosomes from G-MDSCs on the humoral immune response in murine collagen-induced arthritis (CIA). G-MDSCs exosomes-treated mice showed lower arthritis index values and decreased inflammatory cell infiltration. Treatment with G-MDSCs exosomes promoted splenic B cells to secrete IL-10 both in vivo and in vitro. In addition, a decrease in the proportion of plasma cells and follicular helper T cells was observed in drainage lymph nodes from G-MDSCs exosomes-treated mice. Moreover, lower serum levels of IgG were detected in G-MDSCs exosomes-treated mice, indicating an alteration of the humoral environment. Mechanistic studies showed that exosomal prostaglandin E2 (PGE2) produced by G-MDSCs upregulated the phosphorylation levels of GSK-3β and CREB, which play a key role in the production of IL-10+ B cells. Taken together, our findings demonstrated that G-MDSC exosomal PGE2 attenuates CIA in mice by promoting the generation of IL-10+ Breg cells.


2019 ◽  
Vol 20 (16) ◽  
pp. 4046 ◽  
Author(s):  
Valerie R. Wiersma ◽  
Alex Clarke ◽  
Simon D. Pouwels ◽  
Elizabeth Perry ◽  
Trefa M. Abdullah ◽  
...  

The aetiology of rheumatoid arthritis (RA) is unknown, but citrullination of proteins is thought to be an initiating event. In addition, it is increasingly evident that the lung can be a potential site for the generation of autoimmune triggers before the development of joint disease. Here, we identified that serum levels of galectin-9 (Gal-9), a pleiotropic immunomodulatory protein, are elevated in RA patients, and are even further increased in patients with comorbid bronchiectasis, a lung disease caused by chronic inflammation. The serum concentrations of Gal-9 correlate with C-reactive protein levels and DAS-28 score. Gal-9 activated polymorphonuclear leukocytes (granulocytes) in vitro, which was characterized by increased cytokine secretion, migration, and survival. Further, granulocytes treated with Gal-9 upregulated expression of peptidyl arginine deiminase 4 (PAD-4), a key enzyme required for RA-associated citrullination of proteins. Correspondingly, treatment with Gal-9 triggered citrullination of intracellular granulocyte proteins that are known contributors to RA pathogenesis (i.e., myeloperoxidase, alpha-enolase, MMP-9, lactoferrin). In conclusion, this study identifies for the first time an immunomodulatory protein, Gal-9, that triggers activation of granulocytes leading to increased PAD-4 expression and generation of citrullinated autoantigens. This pathway may represent a potentially important mechanism for development of RA.


Sign in / Sign up

Export Citation Format

Share Document