scholarly journals Effect of Polymer Adsorption on Permeability Reduction in Enhanced Oil Recovery

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Saurabh Mishra ◽  
Achinta Bera ◽  
Ajay Mandal

In order to reduce the permeability to water or brine, there is a possibility of polymer injection into the reservoir. In the present work, special focus has been paid in polymer [partially hydrolyzed polyacrylamide (PHPA)] injection as a part of chemical method. Tests were conducted in the laboratory at the ambient temperature to examine the reduction in permeability to water or brine in the well-prepared sand packed after the polymer injection. The experiments were performed to study the effect of polymer adsorption on permeability reduction by analyzing residual resistance factor values with different concentrations of polymer solutions. The rheological behavior of the polymer has also been examined. The experimental results also indicate that the adsorption behavior of polymer is strongly affected by salinity, solution pH, and polymer concentration. To investigate the effect of polymer adsorption and mobility control on additional oil recovery, polymer flooding experiments were conducted with different polymer concentrations. It has been obtained that with the increase in polymer concentrations, oil recovery increases.

SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 497-514 ◽  
Author(s):  
Vitor H. S. Ferreira ◽  
Rosangela B. Z. L. Moreno

Summary The term polymer retention describes all mechanisms that remove the polymer from the flowing solution, with adsorption being its primary cause. This phenomenon can lead to detrimental effects during polymer enhanced oil recovery (EOR). In this paper, we present an investigation of dynamic polymer adsorption in sandstone-outcrop cores using polymer solutions. We study the effects of permeability and polymer concentration on the adsorption under two conditions: on virgin cores (adsorption) and a previously polymer-flooded core (readsorption). According to the results, two concentration plateaus and two regions of concentration-dependent adsorption characterize the polymer adsorption in a virgin porous medium, following a proposed Type IV isotherm. The transition between the first plateau and the second adsorption region occurs near to the overlapping concentration from dilute to semidilute regimes (cp*). Polymer readsorption increases slightly with the successive injection of banks with a higher polymer concentration, following a Type I (Langmuir) isotherm. For that case, we propose a readsorption mechanism on the basis of the desorption of a polymer molecule section and the adsorption of a new free polymer molecule. The adsorption and readsorption isotherms are similar until cp*, while the adsorption is much higher than readsorption for concentrations higher than cp*. Therefore, if the polymer concentration of the mobility control bank is greater than cp*, the total polymer loss during field applications can be reduced by preinjecting a polymer bank of lower concentration.


1975 ◽  
Vol 15 (04) ◽  
pp. 338-346 ◽  
Author(s):  
M.T. Szabo

Abstract Numerous polymer floods were performed in unconsolidated sand packs using a C14-tagged, cross-linked, partially hydrolyzed ployacrylamide, and the data are compared with brine-flood performance in the same sands. performance in the same sands. The amount of "polymer oil" was linearly proportional to polymer concentration up to a proportional to polymer concentration up to a limiting value. The upper limit of polymer concentration yielding additional polymer oil was considerably higher for a high-permeability sand than for a low-permeability sand. It is shown that a minimum polymer concentration exists, below which no appreciable polymer oil can be produced in high-permeability sands. The effect of polymer slug size on oil recovery is shown for various polymer concentrations, and the results from these tests are used to determine the optimum slug size and polymer concentration for different sands. The effect of salinity was studied by using brine and tap water during polymer floods under similar conditions. Decreased salinity resulted in improved oil recovery at low, polymer concentrations, but it had little effect at higher polymer concentrations. Polymer injection that was started at an advanced stage of brine flood also improved the oil recovery in single-layered sand packs. Experimental data are presented showing the effect of polymer concentration and salinity on polymer-flood performance in stratified reservoir polymer-flood performance in stratified reservoir models. Polymer concentrations in the produced water were measured by analyzing the radioactivity of effluent samples, and the amounts of retained polymer in the stratified models are given for each polymer in the stratified models are given for each experiment. Introduction In the early 1960's, a new technique using dilute polymer solutions to increase oil recovery was polymer solutions to increase oil recovery was introduced in secondary oil-recovery operations. Since then, this new technique has attained wide-spread commercial application. The success and the complexity of this new technology has induced many authors to investigate many aspects of this flooding technique. Laboratory and field studies, along with numerical simulation of polymer flooding, clearly demonstrated that polymer additives increase oil recovery. polymer additives increase oil recovery. Some of the laboratory results have shown that applying polymers in waterflooding reduces the residual oil saturation through an improvement in microscopic sweep efficiency. Other laboratory studies have shown that applying polymer solutions improves the sweep efficiency in polymer solutions improves the sweep efficiency in heterogeneous systems. Numerical simulation of polymer flooding, and a summary of 56 field applications, clearly showed that polymer injection initiated at an early stage of waterflooding is more efficient than when initiated at an advanced stage. Although much useful information has been presented, the experimental conditions were so presented, the experimental conditions were so variable that difficulties arose in correlating the numerical data. So, despite this good data, a systematic laboratory study of the factors influencing the performance of polymer flooding was still lacking in the literature. The purpose of this study was to investigate the effect of polymer concentration, polymer slug size, salinity in the polymer bank, initial water saturation, and permeability on the performance of polymer floods. The role of oil viscosity did not constitute a subject of this investigation. However, some of the data indicated that the applied polymer resulted in added recovery when displacing more viscous oil. The linear polymer-flood tests were coupled with tests in stratified systems, consisting of the same sand materials used in linear flood tests. Thus, it was possible to differentiate between the role of polymer in mobility control behind the flood front in each layer and its role in mobility control in the entire stratified system through improvement in vertical sweep efficiency. A radioactive, C14-tagged hydrolyzed polyacrylamide was used in all oil-recovery tests. polyacrylamide was used in all oil-recovery tests. SPEJ P. 338


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Pan-Sang Kang ◽  
Jong-Se Lim ◽  
Chun Huh

Abstract The viscosity of injection fluid is a critical parameter that should be considered for the design and evaluation of polymer flood, which is an effective and popular technique for enhanced oil recovery (EOR). It is known that the shear-thinning behavior of EOR polymer solutions is affected by temperature. In this study, temperature dependence (25–70 °C) of the viscosity of a partially hydrolyzed polyacrylamide solution, the most widely used EOR polymer for oil field applications, was measured under varying conditions of the polymer solution (polymer concentration: 500–3000 ppm, NaCl salinity: 1000–10,000 ppm). Under all conditions of the polymer solution, it was observed that the viscosity decreases with increasing temperature. The degree of temperature dependence, however, varies with the conditions of the polymer solution. Martin model and Lee correlations were used to estimate the dependence of the viscosity of the polymer solution on the polymer concentration and salinity. In this study, we proposed a new empirical model to better elucidate the temperature dependence of intrinsic viscosity. Analysis of the measured viscosities shows that the accuracy of the proposed temperature model is higher than that of the existing temperature model.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Mingchen Ding ◽  
Yugui Han ◽  
Yefei Wang ◽  
Yigang Liu ◽  
Dexin Liu ◽  
...  

Abstract It is generally accepted that polymer flooding gets less effective as the heterogeneity of a reservoir increases. However, very little experimental information or evidence has been collated to indicate which levels of heterogeneity correspond to reservoirs that can (and cannot) be efficiently developed using polymer flooding. Therefore, to experimentally determine a heterogeneity limit for the application of polymer flooding to reservoirs, a series of flow tests and oil displacements were conducted using parallel sand packs and visual models possessing different heterogeneities. For low-concentration polymer flooding (1.0 g/l), the limit determined corresponds to permeability contrasts (PCs) of 10.8 and 10.2, according to the parallel and visual tests, respectively. A significant increase in oil recovery can be achieved by polymer injection within these limits. Increasing the polymer concentration to 2.0 g/l increased these limiting PCs to 52.8 and 50.0, respectively. Additionally, within or beyond these limits, the combined use of polymer and gel may be the best.


1984 ◽  
Vol 24 (03) ◽  
pp. 351-360 ◽  
Author(s):  
D.P. Schmidt ◽  
H. Soo ◽  
C.J. Radke

Abstract Lack of mobility control is a major impediment to successful EOR, especially for high-viscosity oils. This paper presents experimental and theoretical results for continuous, linear, secondary oil displacement using dilute, stable suspensions of oil drops. The major hypothesis is that the oil/water (O/W) emulsion provides microscopic mobility control through entrapment or local permeability reduction not through viscosity-ratio improvement. To describe the displacement process, previous emulsion filtration theory is extended to longer cores and to two-phase flow. Agreement between theory and experiment is satisfactory for continuous secondary oil displacement with 1- to 2-µm [1- to 2-micron] diameter drops of volume concentrations up to 5% in unconsolidated sand packs with permeabilities ranging from 1 to 3 µm2 [1 to 3 darcies]. Dilute suspensions of stable oil drops in water also are successful in diverting flow in parallel-core flooding to the lower-permeability core; therefore, they provide macroscopic mobility control. Introduction To date, two alkaline displacement processes employing stable emulsions have been suggested to improve oil recovery.1 In one process, emulsification with entrainment, oil drops are generated in situ upon reaction of alkali with acidic crude oil. Oil production occurs as an O/W emulsion. In emulsification with entrapment, the other process, oil drops that are generated in situ, or which are externally injected, aid in oil recovery by providing mobility control. These two processes are based on opposing views of how emulsions behave in porous media. According to the entrainment view, oil drops do not interact with the reservoir medium, and recovery of tertiary oil is a possibility.1 Conversely, according to the entrapment view, oil drops interact strongly with the reservoir medium, and improvement only in secondary recovery is sought. Recent work by Soo2 on silute emulsion flow in unconsolidated porous media shows that oil drops clog in pore constrictions and on pore walls, thereby restricting flow. Once captured, there is negligible particle reentrainment. Even drops smaller than the pore throats have a significant capture probability. Soo's study supports the entrapment picture as a more viable description of emulsion flow. However, in spit of field applications of the entrapment technique,3,4 no current methodology exists to predict quantitatively possible mobility-control improvement. This paper presents a theoretical framework for calculation of secondary oil displacement in linear systems with injection of dilute, stable O/W emulsions. Although we focus mainly on microscopic mobility control with dilute emulsions, some attention is given to macroscopic flow redistribution or sweep improvement in parallel cores. The basic premise is that dilute emulsions lower the mobility of the displacing phase through local permeability reduction, not through increasing the viscosity of the displacing phase. We rely heavily on filtration theory, which is successful in describing transient emulsion flow in water-saturated cores.2 The significance of the mathematical treatment is not restricted to the emulsion entrapment technique. It is well known that certain polymers, notably polyacrylamides, establish more mobility control than can be accounted for by bulk rheology.5–11 Large permeability reductions sometimes are observed following polymer injection. Adsorption does not appear to be the main cause of this flow restriction but rather mechanical entrapment - i.e., trapping of high-molecular-weight polymer molecules or, as likely, gels in pore constrictions. Willhite and Dominguez11 recognized the analogy between polymer mechanical entrapment and deep-bed filtration of liquid or solid particulate suspensions. However, they did not explore this analogy quantitatively. Polymer, solid particulate, and emulsion droplet entrapment are directly analogous. Hence, any theory devised for one phenomenon should, in principle, be applicable to the other. Moreover, macroemulsions, as distinguished from microemulsions, sometimes form in surfactant/polymer flooding. Larson et al.12 outline how such emulsion formation might be modeled in displacement calculations. They consider the emulsified oil drops to be retarded in percolating through the porous medium. Permanent capture is not envisioned. This study focused on the filtration and mobility-control aspects of emulsified oil flow. It, therefore, provides an alternative treatment to that of Larson et al. To model EOR with dilute emulsions requires extension of the filtration theory of Soo2 to long cores and to two-phase flow. Combination with classical Buckley-Leverett water flooding theory then permits transient displacement calculations. Before outlining the theory, we present the experimental procedures.


1975 ◽  
Vol 15 (04) ◽  
pp. 323-337 ◽  
Author(s):  
M.T. Szabo

Abstract Numerous single-phase flow and oil-recovery tests were carried out in unconsolidated sands and Berea sandstone cores using C14-tagged, hydrolyzed polyacrylamide solutions. The polymer-retention polyacrylamide solutions. The polymer-retention data from these flow tests are compared with data obtained from static adsorption tests. Polymer concentrations in produced water in Polymer-flooding tests were studied using various Polymer-flooding tests were studied using various polymer concentrations, slug sizes, salt polymer concentrations, slug sizes, salt concentrations, and different permeability sands. Results show that polymer retention by mechanical entrapment had a dominant role in determining the total polymer retention in short sand packs. However, the role of mechanical entrapment was less in the large-surface-area Berea cores. In oil-recovery tests, high polymer concentrations were noted at water breakthrough in sand-pack experiments, an indication that the irreducible water was not displaced effectively ahead of the polymer slug. However, in similar tests with Berea cores, a denuded zone developed at the leading edge of the polymer slug. polymer slug. The existence of inaccessible pore volume to polymer flow is shown both in sand packs and in polymer flow is shown both in sand packs and in sandstone cores. Absolute polymer-retention values show an almost linear dependency on polymer concentration. The effect of polymer slug size on absolute polymer retention is also discussed. Distribution of retained polymer in sand packs showed an exponential decline with distance. The "dynamic polymer-retention" values in short sand packs showed much higher vales than the ‘static packs showed much higher vales than the’ static polymer-adsorption" values caused by mechanical polymer-adsorption" values caused by mechanical entrapment. The mechanism of polymer retention in silica sands and sandstones is described, based on the observed phenomenon. Introduction It is widely recognized that, as polymer solution flows in a porous medium, a portion of the polymer is retained. It is evident that both physical adsorption and mechanical entrapment contribute to polymer retention. The question of the relative importance of these retention mechanisms has not been studied adequately. The effect of residual oil saturation on polymer retention and the polymer retention during the displacement of oil from porous media has also been studied inadequately. Mungen et al. have reported a few data on polymer concentration in produced water in oil-recovery tests. However, no produced water in oil-recovery tests. However, no comparison was made between polymer retention at 100-percent water saturation and at partial oil saturation. It has been shown that the actual size of the flowing polymer molecules, with the associated water, can approach the dimensions of certain smaller pores found in porous media. Therefore, an inaccessible pore volume exists in which no polymer flow occurs. In this study, the existence polymer flow occurs. In this study, the existence of inaccessible pore volume is shown clearly, both in sand and sandstone. Although polymer-retention values have been reported for various conditions, correlation is difficult because of the differing conditions of measurements. The effect of slug size, polymer concentration, salinity, and type of porous media on polymer retention has not been systematically studied. The purpose of this study was to develop answers to these questions, rather than to provide adsorption data for actual field core samples. For this reason, unconsolidated silica sands were used in most of the experiments reported. This permitted identical, uniform single-layer and multilayer porous media to be constructed for repeated experiments under varying test conditions. Some experiments were also carried out in Berea sandstone cores to determine whether sand-pack results can be extrapolated to consolidated sandstones. Using a C 14-tagged polymer provided a very rapid, simple, and accurate polymer-concentration determination technique. SPEJ P. 323


1981 ◽  
Vol 21 (05) ◽  
pp. 623-631 ◽  
Author(s):  
J.S. Ward ◽  
F. David Martin

Abstract Loss of solution viscosity in water of increasing ionic strength is a major problem encountered in the use of the partially hydrolyzed polyacrylamide polymers for improved oil recovery. It is recognized widely that the viscosity loss is more drastic in the presence of multivalent cations than is observed for sodium ions. There is, however, little information available on the relationships between total ionic strength, concentrations of multivalent cations, and solution viscosities.The purpose of this study is to establish relationships between total ionic strength, concentration of calcium or magnesium ions, polymer concentration, and the resulting viscosity for partially hydrolyzed polyacrylamides with varying degrees of hydrolysis. Solutions at constant ionic strength with varying ratios of calcium or magnesium to sodium ions are compared, and the loss of viscosity as a function of the fraction of divalent cations in the system is determined. For shear rates in the power-law region, the fractional loss in viscosity is a function of the fraction of multivalent cations and, in the range studied, is independent of the total ionic strength. A more complicated relationship is found at lower shear rates where the fractional viscosity loss does vary with total ionic strength.The relationship in the power-law region should prove valuable in predicting viscosities on the basis of the dependence of viscosity on ionic strength and on multivalent cation concentration at a single ionic strength, eliminating the need for many individual measurements of viscosity. More work is needed before useful predictions will be possible at lower shear rates. Introduction Partially hydrolyzed polyacrylamide (HPAM) polymers are currently the most widely used mobility control polymers for secondary and tertiary oil recovery. Small quantities of HPAM can increase the viscosity of water by two or more orders of magnitude in the absence of added electrolytes. This phenomenal increase in viscosity results from the extremely high molecular weight of these polymers and repulsion between the negative charges along the polymer chain, resulting in maximum chain extension. The latter mechanism leads to one of the greater disadvantages of using HPAM in an oil reservoir. In the presence of the electrolyte molecules in typical oilfield brines, negative charges along the polymer chain are screened from each other by association with cations from the solution. The polymer chains no longer are extended fully, and solution viscosity decreases. Mungan observed that divalent cations have a more pronounced effect on viscosity than univalent cations when compared on the basis of equal weights of the chloride salts.Viscosities have been reported for HPAM solutions in sodium chloride brines of varying strength as well as for solutions in brines containing CaCl2 or MgCl2. Some viscosities also have been reported for solutions in brines containing both sodium and calcium ions, but no systematic study of the viscosity trends in brines with more than one type of cation has been reported.The purpose of this study is to investigate HPAM solutions with varying ratios of univalent to divalent cations and to establish trends of the solution viscosities for different values of degree of polymer hydrolysis, polymer concentration, and total ionic strength. Such trends are useful for predicting a wide range of viscosities from a few basic measurements. SPEJ P. 623^


2020 ◽  
Vol 42 (2) ◽  
pp. 59-63
Author(s):  
Yani Faozani Alli

The use of polymer for tertiary oil recovery has been known to be important as viscosity modifier to increase sweep efficiency of water flood and chemical flood. The most common polymer used for chemical flood is hydrolyzed polyacrylamide (HPAM) that owing large number of charges along the polymer chains. However, formation water as dissolution water contain high electrolytes that has a great effect on polymer viscosity, as well as responsible to generate the efficiency of polymer flooding. In this study, the effect of electrolytes from saline and cation divalent to the viscosity of polymer was investigated. Three studied polymers were dissolved in various concentration of saline and cation divalent by analyzing the compatibility, viscosity, and the filtration ratio of polymers. The results showed that the presence of electrolytes in every concentration of water did not impact the compatibility and filtration ratio of polymers. Whereas, the addition of sodium chloride as saline ionic and calcium chloride as cationic divalent were both reducing the viscosity of polymers. The lower viscosity of polymer related to the ability of polymer to expand the hydrodynamic which limited by the neutralization of internal repulsion of the electrolytes.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yang Lei ◽  
Shurong Li ◽  
Xiaodong Zhang ◽  
Qiang Zhang ◽  
Lanlei Guo

Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR). In this paper, an optimal control model of distributed parameter systems (DPSs) for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and the inequality constraint as the polymer concentration limitation. To cope with the optimal control problem (OCP) of this DPS, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.


1975 ◽  
Vol 15 (04) ◽  
pp. 311-322 ◽  
Author(s):  
J.M. Maerker

Abstract Partially hydrolyzed polyacrylamide solutions are highly shear degradable and may lose much of their effectiveness in reducing water mobility when sheared by flow through porous rock in the vicinity of an injection well. Degradation is investigated by forcing polymer solutions, prepared in brines of various salinities, through consolidated sandstone plugs differing in length and permeability, over a plugs differing in length and permeability, over a wide range of flow rates. A correlation for degradation based on a theoretical viscoelastic fluid model is developed that extends predictive capability to situations not easily reproduced in the laboratory. Mobility-reduction losses in field cores at reservoir flow rates are measured following degradation and are found to depend strongly on formation permeability. Consideration of field applications shows that injection into typical wellbore geometries can lead to more than an 80-percent loss of the mobility reduction provided by undegraded solutions. Also discussed are consequences for incremental oil recovery and the possibility of injecting through propped fractures. possibility of injecting through propped fractures Introduction Susceptibility of commercially available, partially hydrolyzed polyacrylamides to mechanical, or shear, degradation represents a serious problem regarding their applicability as mobility-control fluids for secondary and tertiary oil recovery applications. The approach taken in this work assumes that surface handling equipment in the field (pumps, flow controllers, etc.) have been adequately designed to minimize effects of shear degradation in all operations preceding actual delivery of the polymer solution to the sand face. The remaining problem is to assess the mechanical degradation a polymer solution experiences when it enters the porous matrix at the high fluxes prevailing around injection wells. Ability to predict the degree of mobility-control loss based on a laboratory investigation of the relevant parameters is desirable. White et al. were the first to attempt prediction of matrix-induced degradation, but the result was only a recommended injection-rate limit for minimizing polymer degradation for two specific wellbore completions. More recent papers offer limited data supporting the contention that matrix-induced degradation of polyacrylamide solutions results in significant loss polyacrylamide solutions results in significant loss of mobility control . This paper investigates the cause of mechanical degradation in dilute polymer solutions and presents experimental data on the effects of polymer concentration, water salinity, permeability, flow rate, and flow distance. permeability, flow rate, and flow distance. Several interesting and unexpected conclusions are drawn from the results. BACKGROUND - THEORETICAL CONCEPT The mechanical degradation of polymer solutions occurs when fluid stresses developed during deformation, or flow, become large enough to break the polymer molecular chains. Historically, the feeling has been that shearing stresses in laminar shear flow or turbulent pipe flow were responsible for chain scission. However, recent data reported by Culter et al. suggest that degradation of viscoelastic polymer solutions in capillary tubes may be dominated by large elongational or normal caresses occurring at the entrance to the squared-off capillaries. Such stresses result from Lagrangian unsteady flow, or elongational deformation, at the tube entrance. Flow through porous media also generates velocity fields that are sufficiently unsteady, in the Lagrangian sense, to lead one to anticipate large viscoelastic normal stresses. Viscoelastic fluids are materials that behave like viscous liquids at low rates of deformation and partially like elastic solids at high rates of partially like elastic solids at high rates of deformation. Several constitutive models are available for describing the stress-strain behavior of such fluids. SPEJ P. 311


Sign in / Sign up

Export Citation Format

Share Document