scholarly journals Synthesis of ZnO-CuO Nanocomposite Aerogels by the Sol-Gel Route

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Rula M. Allaf ◽  
Louisa J. Hope-Weeks

The epoxide addition sol-gel method has been utilized to synthesize porous zinc-copper composite aerogels in the zinc-to-copper molar ratios of 50 : 50 to 90 : 10. A two-step mixing approach has been employed to produce aerogels composed of nano- to micrometer sized particles. The aerogels were characterized by ultrahigh resolution scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. The as-synthesized aerogels had a thin flake- or petal-like microstructure comprised of clustered flakes on two size scales; they were identified as being crystalline with the crystalline species identified as copper nitrate hydroxide, zinc hydroxide chloride hydrate, and zinc hydroxide nitrate hydrate. Annealing of the aerogel materials at a relatively low temperature (400°C) resulted in a complete phase transition of the material to give highly crystalline ZnO-CuO aerogels; the aerogels consisted of networked nanoparticles in the ~25–550 nm size range with an average crystallite size of ~3 nm and average crystallinity of 98%. ZnO-CuO aerogels are of particular interest due to their particular catalytic and sensing properties. This work emphasizes the versatility of this sol-gel route in synthesizing aerogels; this method offers a possible route for the fabrication of aerogels of different metal oxides and their composites.

2007 ◽  
Vol 22 (5) ◽  
pp. 1182-1187
Author(s):  
Amita Verma ◽  
A.K. Srivastava ◽  
N. Karar ◽  
Harish Chander ◽  
S.A. Agnihotry

Nanostructured thermally treated xerogels have been synthesized using a sol-gel process involving cerium (Ce) chloride heptahydrate and titanium (Ti) propoxide mixed in different Ce:Ti molar ratios. Structural features of the xerogels have been correlated with their photoluminescence (PL) response. The crystallite sizes in the samples lie in the nanorange. The x-ray diffraction and transmission electron microscopy results have confirmed the coexistence of CeO2 and TiO2 nanocrystallites in these xerogels. In general, a decrease in the CeO2 crystallite size and an increase in the TiO2 crystallite size are observed in the xerogels as a function of Ti content. Scanning electron microscopy results have evidenced the evolution of ordered structure in the xerogels as a function of TiO2 content. Although both of the phases (CeO2 and TiO2) have exhibited PL in ultraviolet and visible regions, the major luminescence contribution has been made by the CeO2 phase. The largest sized CeO2 crystallites in 1:1 thermally treated xerogel have led to its highest PL response. PL emission in the xerogels is assigned to their nanocrystalline nature and oxygen vacancy-related defects.


2013 ◽  
Vol 764 ◽  
pp. 255-265 ◽  
Author(s):  
R. Dhanalakshmi ◽  
A. Pandikumar ◽  
R. Ramaraj

The TiO2-ZnO nanocomposite materials ((TiO2-ZnO)NCM) with different molar ratios (Ti:Zn) was synthesized by chemical route and dispersed in functionalized silicate sol-gel matrix (Silicate/(TiO2-ZnO)NCM)). The as prepared Silicate/(TiO2-ZnO)NCM were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The dispersion of the small amount of (TiO2-ZnO)NCM in silicate sol-gel matrix paves the way for the preparation of solid-state thin film photocatalyst which is advantageous for the separation of the catalyst from solution, the substrates and the reaction products. The simultaneous photoinduced oxidation of methylene blue (MB) dye and reduction of Cr (VI) to Cr (III) was examined at different amine functionalized silicate sol-gel embedded (TiO2-ZnO)NCM films. The (TiO2-ZnO)NCM dispersed into the amine functionalized silicate sol-gel matrix (TPDT) exhibited enhanced photocatalytic activity when compared to the (TiO2-ZnO)NCM without the silicate sol-gel. The functionalized silicate sol-gel supported (TiO2-ZnO)NCM is a potential candidate for energy conversion and environment remediation and cleaning applications.


2010 ◽  
Vol 148-149 ◽  
pp. 893-896 ◽  
Author(s):  
Ze Yang Zhang ◽  
Xiang Xuan Liu ◽  
You Peng Wu

M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were successfully prepared by the sol-gel method and solution phase reduction method, respectively. The crystalline and morphology of particles were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The composite coatings with SrFe12O19 ferrites and FeNi3 nanoplatelets in polyvinylchloride matrix were prepared. The microwave absorption properties of these coatings were investigated in 2-18GHz frequency range. The results showed that the M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were obtained and they presented irregular sheet shapes. With the increase of the coating thickness, the absorbing peak value moves to the lower frequency. The absorbing peak values of the wave increase along with the increasing of the content of FeNi3 nanoplatelets filling fraction. When 40% SrFe12O19 ferrites is doped with 20% mass fraction FeNi3 nanoplatelets to prepare composite with 1.5mm thickness, the maximum reflection loss is -24.8 dB at 7.9GHz and the -10 dB bandwidth reaches 3.2GHz.


2018 ◽  
Vol 41 (3-4) ◽  
pp. 53-62 ◽  
Author(s):  
Behnaz Lahijani ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

Abstract In this work, the PbFe12O19 nanoparticles were prepared by the simple and optimized precipitation method with different organic surfactants and capping agents. In the next step, the TiO2 nanoparticles were synthesized using the sol-gel method. At the final step, the PbFe12O19-TiO2 nanocomposites were prepared via the sol-gel method. The effect of the precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results obtained by the vibrating sample magnetometer show the magnetic properties of the ferrite nanostructures. The photocatalytic effect of the PbFe12O19-TiO2 nanocomposite on the elimination of the azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation was evaluated. The results indicate that the prepared nanocomposites have acceptable magnetic and photocatalytic performance.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2090616
Author(s):  
Ricardo Andrés Solano Pizarro ◽  
Adriana Patricia Herrera Barros

In this research, the photocatalytic degradation of cypermethrin using iron-titanium dioxide (Fe-TiO2) nanoparticles supported in a biomaterial was evaluated. The nanoparticles of TiO2 were synthesized by the green chemistry method assisted by ultrasound and doped by chemical impregnation using Fe+3:Ti molar ratios of 0, 0.05, 0.075 and 0.1 to make efficient use of direct sunlight ( λ > 310 nm). All nanoparticles were immobilized on the surface of coconut spathe ( Cocos nucifera). The degradation was carried out at room temperature and natural pH in a flat plate solar reactor, on which the composite material was subjected. The concentration of cypermethrin was determined after 12,000 J m−2 of accumulated radiation from gas chromatography–mass spectrometry and the resulting material was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, and Brunauer-Emmett-Teller (BET) surface area. The best results were achieved with the use of Evonik TiO2 P-25, Fe:Ti = 0 and Fe:Ti = 0.05 in suspension, with percentages of degradation of cypermethrin of 99.84%, 99.62%, and 100%, respectively. However, the materials supported on the biomaterial of coconut allowed to reach degradation percentages higher than 80%, with the advantage that it minimizes operating costs, as they are not necessarily filtering or centrifuging processes to separate the catalyst.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Carmen Steluta Ciobanu ◽  
Simona Liliana Iconaru ◽  
Florian Massuyeau ◽  
Liliana Violeta Constantin ◽  
Adrian Costescu ◽  
...  

The luminescent europium-doped hydroxyapatite (Eu:HAp, Ca10−xEux(PO4)6(OH)2) with0≤x≤0.2nanocrystalline powders was synthesized by coprecipitation. The structural, morphological, and textural properties were well characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The vibrational studies were performed by Fourier transform infrared, Raman, and photoluminescence spectroscopies. The X-ray diffraction analysis revealed that hydroxyapatite is the unique crystalline constituent of all the samples, indicating that Eu has been successfully inserted into the HAp lattice. Eu doping inhibits HAp crystallization, leading to a decrease of the average crystallite size from around 20 nm in the undoped sample to around 7 nm in the sample with the highest Eu concentration. Furthermore, the samples show the characteristic5D0→7F0transition observed at 578 nm related to Eu3+ions distributed on Ca2+sites of the apatitic structure.


2007 ◽  
Vol 553 ◽  
pp. 245-251
Author(s):  
Ali Shokuhfar ◽  
Tolou Shokuhfar ◽  
M. Ghazinejad ◽  
R. Babazade ◽  
S. Tabatabae

Monodispersed nanometer-sized particles proved to be very important and advantageous in many industrial applications. One of the notable groups of these particles is silica (SiO2) nanoparticles which are widely utilized in developing numerous products such as electrical and thermal insulators, humidity sensors, varnish, etc. Since the quality of some of these products depends highly on the purity and size distribution of the silica particles, it is necessary to produce silica nanoparticles of narrow size distribution and very high purity. In this research silica nanoparticles, with a relatively narrow size distribution, have been synthesized via the hydrolysis reaction of tetraethoxisilane (TEOS) in the solution of deionized water and ethanol (C2H5OH), and in the presence of ammonia (NH3) as a catalyst. The nature, morphology and the size of the silica particles has been studied using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray diffraction. Results indicate that the morphology, structure and the diameter of silica particles depend strongly on the molar ratios of the reactants.


1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
C. Massard ◽  
S. Pairis ◽  
V. Raspal ◽  
Y. Sibaud ◽  
K. O. Awitor

The feasibility of surface nanopatterning with TiO2nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO) template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM). The TiO2nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM) with selected area electron diffraction (SAED) were used to investigate the TiO2structure. The optical properties were studied using UV-Vis spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document