scholarly journals Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Xiaoshi Li ◽  
Yiwen Ju ◽  
Quanlin Hou ◽  
Zhuo Li ◽  
Mingming Wei ◽  
...  

The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship betweenSandVturns from a positive correlation to a negative correlation whenS>4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal.

1995 ◽  
Vol 12 (2) ◽  
pp. 101-107 ◽  
Author(s):  
Riaz Qadeer ◽  
Javed Hanif ◽  
Abdul Majeed

Nitrogen adsorption on metal (Ni, Cu, Zn) impregnated charcoal has been carried out at 77 K by the continuous flow method using a Quantasorb sorption system. It was observed that such metal impregnation did not contribute any extra surface area to the charcoal. The values of the surface area, micropore and total pore volumes determined from nitrogen adsorption follow the sequence Ni–charcoal < Cu–charcoal < Zn–charcoal < charcoal. Their behaviour is discussed in terms of the ionic radii of the metal ions concerned. The pore size distribution curves demonstrate the microporous nature of the charcoal, with the micropores contributing significantly to the total pore volume.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2018 ◽  
Vol 37 (1) ◽  
pp. 493-518 ◽  
Author(s):  
Liangwei Xu ◽  
Yang Wang ◽  
Luofu Liu ◽  
Lei Chen ◽  
Ji Chen

Thermal maturity has a considerable impact on hydrocarbon generation, mineral conversion, nanopore structure, and adsorption capacity evolution of shale, but that impact on organic-rich marine shales containing type II kerogen has been rarely subjected to explicit and quantitative characterization. This study aims to obtain information regarding the effects of thermal maturation on organic matter, mineral content, pore structure, and adsorption capacity evolution of marine shale. Mesoproterozoic Xiamaling immaturity marine oil shale with type II kerogen in Zhangjiakou of Hebei, China, was chosen for anhydrous pyrolysis to simulate the maturation process. With increasing simulation temperature, hydrocarbon generation and mineral transformation promote the formation, development, and evolution of pores in the shale. The original and simulated samples consist of closed microspores and one-end closed pores of the slit throat, all-opened wedge-shaped capillaries, and fractured or lamellar pores, which are related to the plate particles of clay. The increase in maturity can promote the formation and development of pores in the shale. Heating can also promote the accumulation, formation, and development of pores, leading to a large pore volume and surface area. The temperature increase can promote the development of pore volume and surface area of 1–10 and 40-nm diameter pores. The formation and development of pore volume and surface area of 1–10 nm diameter pores are more substantial than that of 40-nm diameter pores. The pore structure evolution of the sample can be divided into pore adjustment (T < 350°C, EqRo < 0.86%), development (350°C < T < 650°C, 0.86% < EqRo < 3.28%), and conversion or destruction stages (T > 650°C, EqRo > 3.28%). Along with the increase in maturity, the methane adsorption content decreases in the initial simulation stage, increases in the middle simulation stage, and reaches the maximum value at 650°C, after which it gradually decreases. A general evolution model is proposed by combining the nanopore structure and the adsorption capacity evolution characteristics of the oil shale.


2013 ◽  
Vol 859 ◽  
pp. 333-336
Author(s):  
Hai Chun Chen ◽  
Xiao Bei Pei

La-B-TiO2photocatalysts were prepared using tetrabutyl titanate, tributyl borate, and lanthanum chloride as the precursors by solvothermal method. The prepared sample is composed of irregular particles with fairly rough surface in the size within 5 μm. Large surface area and pore volume are benefit to adsorption and photocatalytic degradation activity of the materials. Pore size of the 1%La-3%B-TiO2sample mainly distributes in the range between 5-35 nm. Specific surface area of the material is 101.45 m2/g. The sample containing 0.5% La presents the maximum decoloration efficiency. When La content is 0.5%, methyl orange adsorption rate on the material is less than 5%, and photocatalytic degradation rate is 39.9%.


2008 ◽  
Vol 135 ◽  
pp. 81-84 ◽  
Author(s):  
Ji Sun Im ◽  
Soo Jin Park ◽  
Young Seak Lee

In this work, carbon nanofibers(CNFs) were prepared by using electrospinning method. Phosphoric acid and sodium carbonate activation of CNFs were conducted to increase surface area and pore volume. Pore structures of activated CNFs were developed with increasing surface area and pore volume through activation. Specific surface area increased about 60 times and total pore volume developed around 120 times. Activated CNFs have different pore distribution with different chemical agent.


2013 ◽  
Vol 341-342 ◽  
pp. 345-350 ◽  
Author(s):  
Wei Min Cheng ◽  
Xiao Qiang Zhang ◽  
Rui Zhang ◽  
Gang Wang

In view of pore distribution in coal, this paper applies BJH method that is based on the cylinder theory and adopts cryogenic liquid nitrogen adsorption method to carry out experimental investigation on pore structure of No.3U coal seam in Sanhekou Coalmine, obtaining the fact that pore structure of No.3U coal is complicated, the cool pores are mostly flask pores, others are the parallel plate pores with one end closed and the cylinder pores with one end closed; According to the distribution of BJH pore volume and pore surface area, ultramicropores with apertures less than 10 nm are among the most; Then obtain the average BET specific surface area, the distribution of BJH pore volume and pore area, average single-point total pore volume and most probable pore .etc, which conducive to a better understanding of the micropores characteristic of coal.


2014 ◽  
Vol 67 (4) ◽  
Author(s):  
Noor Shawal Nasri ◽  
Mohammed Jibril ◽  
Muhammad Abbas Ahmad Zaini ◽  
Rahmat Mohsin ◽  
Hamza Usman Dadum ◽  
...  

Porous carbons were synthesized from coconut shell using chemical activation by potassium hydroxide (KOH). N2 adsorption isotherm analysis for BET surface area and pore volume of the synthesized porous carbon were carried out. The Langmuir surface area, BET surface area and pore volume are 1646 m2/g, 1353 m2/g and 0.6 cm3/g, respectively. From the FTIR analysis, hydroxyls, alkenes, carbonyls and aromatics functional groups were identified. The proximate and ultimate analysis shows high percentage of carbon and less ash content which indicates a good precursor material for porous carbon. The carbonization temperature and time were also varied to observe their effect on the yield of char, with carbonization at 7000C for 2 h having highest yield of 32%.


2014 ◽  
Vol 513-517 ◽  
pp. 82-85
Author(s):  
Rui Rui Li ◽  
Yue Shi ◽  
Lei Zu ◽  
Hui Qin Lian ◽  
Yang Liu ◽  
...  

The mesoporous polycarbonate-silica nanocomposite materials were synthesized through the modified sol-gel approach under acidic condition. The specific surface area, pore diameter and pore volume of polycarbonate-silica could be controlled by changing the acidity of the synthesis system. The polycarbonate-silica possess an irregular block morphology according to the scanning electron microscopy observations. With decreasing the pH value of the synthesis system, the specific surface area and pore diameter of polycarbonate-silica were raised but the pore volume was reduced. The maximum specific surface area of polycarbonate-silica was 701.71m2/g which presented by the results of Nitrogen adsorptiondesorption isotherms.


Author(s):  
Salam J. J. Titinchi ◽  
Waheed Saban ◽  
Leslie Petrik ◽  
Hanna S. Abbo

Ordered mesoporous carbon (OMC) has been prepared by impregnating the pores of the silica template (SBA-15) with liquid petroleum gas (LPG) or sucrose. The desired support (OMC) was obtained after dissolution with NaOH. Platinum nanoparticles were dispersed on ordered mesoporous carbons using Chemical Vapour Deposition (CVD) method and Pt(acac)2 as metal source. The resulting ordered mesoporous carbon possess a large surface area with high microporosity, and a controlled pore size distribution, High-quality carbon replicas of SBA-15 show an X-ray diffraction peak at low angle, which indicates that the structural periodicity of the (111) planes has been maintained. Their pore volume and specific surface area are high and the pore volume is almost entirely microporous. The synthesized Pt/OMC was characterized by powder X-Ray diffraction, HR-TEM, HR-SEM, EDS, thermogravimetric analysis, and nitrogen adsorption. The performance of Pt catalyst supported OMC was evaluated by electrochemical studies, which shows almost similar activity to the commercial catalyst.


Sign in / Sign up

Export Citation Format

Share Document