scholarly journals Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

2011 ◽  
Vol 47 (10) ◽  
Author(s):  
Michael B. Hay ◽  
Deborah L. Stoliker ◽  
James A. Davis ◽  
John M. Zachara
2013 ◽  
Vol 859 ◽  
pp. 333-336
Author(s):  
Hai Chun Chen ◽  
Xiao Bei Pei

La-B-TiO2photocatalysts were prepared using tetrabutyl titanate, tributyl borate, and lanthanum chloride as the precursors by solvothermal method. The prepared sample is composed of irregular particles with fairly rough surface in the size within 5 μm. Large surface area and pore volume are benefit to adsorption and photocatalytic degradation activity of the materials. Pore size of the 1%La-3%B-TiO2sample mainly distributes in the range between 5-35 nm. Specific surface area of the material is 101.45 m2/g. The sample containing 0.5% La presents the maximum decoloration efficiency. When La content is 0.5%, methyl orange adsorption rate on the material is less than 5%, and photocatalytic degradation rate is 39.9%.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Xiaoshi Li ◽  
Yiwen Ju ◽  
Quanlin Hou ◽  
Zhuo Li ◽  
Mingming Wei ◽  
...  

The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship betweenSandVturns from a positive correlation to a negative correlation whenS>4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal.


2008 ◽  
Vol 135 ◽  
pp. 81-84 ◽  
Author(s):  
Ji Sun Im ◽  
Soo Jin Park ◽  
Young Seak Lee

In this work, carbon nanofibers(CNFs) were prepared by using electrospinning method. Phosphoric acid and sodium carbonate activation of CNFs were conducted to increase surface area and pore volume. Pore structures of activated CNFs were developed with increasing surface area and pore volume through activation. Specific surface area increased about 60 times and total pore volume developed around 120 times. Activated CNFs have different pore distribution with different chemical agent.


2014 ◽  
Vol 67 (4) ◽  
Author(s):  
Noor Shawal Nasri ◽  
Mohammed Jibril ◽  
Muhammad Abbas Ahmad Zaini ◽  
Rahmat Mohsin ◽  
Hamza Usman Dadum ◽  
...  

Porous carbons were synthesized from coconut shell using chemical activation by potassium hydroxide (KOH). N2 adsorption isotherm analysis for BET surface area and pore volume of the synthesized porous carbon were carried out. The Langmuir surface area, BET surface area and pore volume are 1646 m2/g, 1353 m2/g and 0.6 cm3/g, respectively. From the FTIR analysis, hydroxyls, alkenes, carbonyls and aromatics functional groups were identified. The proximate and ultimate analysis shows high percentage of carbon and less ash content which indicates a good precursor material for porous carbon. The carbonization temperature and time were also varied to observe their effect on the yield of char, with carbonization at 7000C for 2 h having highest yield of 32%.


1995 ◽  
Vol 12 (2) ◽  
pp. 101-107 ◽  
Author(s):  
Riaz Qadeer ◽  
Javed Hanif ◽  
Abdul Majeed

Nitrogen adsorption on metal (Ni, Cu, Zn) impregnated charcoal has been carried out at 77 K by the continuous flow method using a Quantasorb sorption system. It was observed that such metal impregnation did not contribute any extra surface area to the charcoal. The values of the surface area, micropore and total pore volumes determined from nitrogen adsorption follow the sequence Ni–charcoal < Cu–charcoal < Zn–charcoal < charcoal. Their behaviour is discussed in terms of the ionic radii of the metal ions concerned. The pore size distribution curves demonstrate the microporous nature of the charcoal, with the micropores contributing significantly to the total pore volume.


2014 ◽  
Vol 513-517 ◽  
pp. 82-85
Author(s):  
Rui Rui Li ◽  
Yue Shi ◽  
Lei Zu ◽  
Hui Qin Lian ◽  
Yang Liu ◽  
...  

The mesoporous polycarbonate-silica nanocomposite materials were synthesized through the modified sol-gel approach under acidic condition. The specific surface area, pore diameter and pore volume of polycarbonate-silica could be controlled by changing the acidity of the synthesis system. The polycarbonate-silica possess an irregular block morphology according to the scanning electron microscopy observations. With decreasing the pH value of the synthesis system, the specific surface area and pore diameter of polycarbonate-silica were raised but the pore volume was reduced. The maximum specific surface area of polycarbonate-silica was 701.71m2/g which presented by the results of Nitrogen adsorptiondesorption isotherms.


2020 ◽  
Vol 9 (4) ◽  
pp. 64-69
Author(s):  
Hao Nguyen Truong Gia ◽  
Huy Tran Huynh Gia ◽  
Phuong Nguyen Thi Truc ◽  
Tu Le Nguyen Quang ◽  
Dung Nguyen Van ◽  
...  

In this study, experimental results on mesoporous zeolite preparation from a common solid waste, the rice husk ash by a top-down and bottom-up approach were reported. In top-down method, the consecutive treatments of zeolite by acid and alkaline in the presence of a cationic surfactant (CTAB) successfully generated mesopores in the zeolite. In bottom-up method, the sufficient added amount of CTAB in the gel composition could form mesopores in the zeolite. The obtained mesoporous zeolite possessed mesopore with a size of around 3-6 nm in both top-down and bottom-up approaches. As a result, the pore volume of the mesoporous zeolite was significantly increased by more than 60% when comparing to the “parent” rice-husk-ash derived zeolite. Significantly, the mesopore surface area of the mesoporous zeolite could be 2.4 times higher than that of the parent zeolite.


2011 ◽  
Vol 393-395 ◽  
pp. 1355-1358 ◽  
Author(s):  
Jun Zhang

Magnetic coal-based activated carbon was prepared from Taixi anthracitic coal in the presence of magnetite (Fe3O4). The magnetic activated carbon samples were characterized by N2 adsorption, XRD, FTIR and vibrating sample magnetometer (VSM). It was found that the magnetic activated carbon had a high surface area of 993.5 m2/g with 4% Fe3O4 and a saturation magnetization of 2.4158 emu/g for magnetic separability. The results showed that the magnetic properties of MAC are provided by Fe3O4 and Fe. In the presence of Fe3O4, the rate of carbonization and activation increase to form a large surface area and a high pore volume. Moreover, the addition of Fe3O4 can greatly promote the number of both micro-pores and meso-pores in activated carbon.


2010 ◽  
Vol 160-162 ◽  
pp. 524-528
Author(s):  
Zhen Tian ◽  
Nai Ci Bing

Fluorination of the zeolite has been known as a useful method to modify its acidity and surface performance. In this paper, a set of zeolite Hβ were impregnated with aqueous solution of NH4F. The effects of NH4F impregnation on the structure and acidity of Hβ was investigated by XRD, BET measurements, NH3-TPD, and Py-IR. The change of specific surface area and pore volume of the fluorinated samples with NH4F can be attributed the reaction of NH4F with non-framework and framework aluminum. The fluorination increases the strength and changes the distribution of the acid sites; the fluorination also leads to the decrease of the total acid sites and the Brönsted acid sites due to the dealuminization of the samples and the substitution of the OH- by fluorine atoms.


2018 ◽  
Vol 69 (3) ◽  
pp. 567-570
Author(s):  
Claudia Cobzaru ◽  
Adriana Marinoiu ◽  
Corina Cernatescu ◽  
Adrian Catalin Puitel ◽  
Amalia Soare

In this study the adsorption of cinnamaldehyde on the dealuminated clinoptilolite has been studied in order to investigate the possibility of using this mineral as carrier for organic compound. The characterization of dealuminated clinoptilolite and adsorption of cinnamaldehyde on the material surface has been investigated by BET, SEM and FTIR methods. These analyses show that by dealumination, significant modifications are produced in chemical composition, pore volume and surface area of the clinoptilolite and the cinnamaldehyde was adsorpted in the structure of dealuminated zeolite. Due to properties of the cinnamaldehyde, the obtained product can be used as an agrichemical.


Sign in / Sign up

Export Citation Format

Share Document