scholarly journals Prepubertal Exposure to Genistein Alleviates Di-(2-ethylhexyl) Phthalate Induced Testicular Oxidative Stress in Adult Rats

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lian-Dong Zhang ◽  
He-Cheng Li ◽  
Tie Chong ◽  
Ming Gao ◽  
Jian Yin ◽  
...  

Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plastizer in the world and can suppress testosterone production via activation of oxidative stress. Genistein (GEN) is one of the isoflavones ingredients exhibiting weak estrogenic and potentially antioxidative effects. However, study on reproductive effects following prepubertal multiple endocrine disrupters exposure has been lacking. In this study, DEHP and GEN were administrated to prepubertal male Sprague-Dawley rats by gavage from postnatal day 22 (PND22) to PND35 with vehicle control, GEN at 50 mg/kg body weight (bw)/day (G), DEHP at 50, 150, 450 mg/kg bw/day (D50, D150, D450) and their mixture (G + D50, G + D150, G + D450). On PND90, general morphometry (body weight, AGD, organ weight, and organ coefficient), testicular redox state, and testicular histology were studied. Our results indicated that DEHP could significantly decrease sex organs weight, organ coefficient, and testicular antioxidative ability, which largely depended on the dose of DEHP. However, coadministration of GEN could partially alleviate DEHP-induced reproductive injuries via enhancement of testicular antioxidative enzymes activities, which indicates that GEN has protective effects on DEHP-induced male reproductive system damage after prepubertal exposure and GEN may have promising future in its curative antioxidative role for reproductive disorders caused by other environmental endocrine disruptors.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chunling Tang ◽  
Jian Hu

AbstractResearches pivoting on histone deacetylases (HDACs) in depression have been excessively conducted, but not much on HDAC1. Therein, the present study is launched to disclose the mechanism of HDAC1/microRNA (miR)-124-5p/neuropeptide Y (NPY) axis in depression. Sprague Dawley rats were stimulated by chronic unpredictable mild stress to establish depression models. Depressed rats were injected with inhibited HDAC1 or suppressed miR-124-5p to explore their roles in body weight, learning and memory abilities, oxidative stress and inflammation in serum and neurotransmitter expression in hippocampal tissues. MiR-124-5p, HDAC1 and NPY expression in the hippocampus were tested. The interactions of miR-124-5p, HDAC1 and NPY expression were also confirmed. Higher miR-124-5p and HDAC1 and lower NPY expression levels were found in the hippocampus of depressed rats. Inhibited miR-124-5p or suppressed HDAC1 attenuated learning and memory abilities and increased body weight of depressed rats. Knockdown of miR-124-5p or inhibition of HDAC1 suppressed oxidative stress and inflammation and promoted neurotransmitter expression of depressed rats. HDAC1 mediated miR-124-5p to regulate NPY. Knockdown of NPY abolished the protective effects of inhibited miR-124-5p on depressed rats. Our study illustrates that suppression of either miR-124-5p or HDAC1 up-regulates NPY to improve memory and learning abilities in depressed mice, which may update the existed knowledge of depression and provide a novel reference for treatment of depression.


2018 ◽  
Vol 9 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jing Shi ◽  
Guofeng Wu ◽  
Xiaohua Zou ◽  
Ke Jiang

Background/Aims: Cardiac surgery-associated acute kidney injury (CSA-AKI) is one of the most common postoperative complications in intensive care medicine. Baicalin has been shown to have anti-inflammatory and antioxidant roles in various disorders. We aimed to test the protective effects of baicalin on CSA-AKI using a rat model. Methods: Sprague-Dawley rats underwent 75 min of cardiopulmonary bypass (CPB) with 45 min of cardioplegic arrest (CA) to establish the AKI model. Baicalin was administered at different doses intragastrically 1 h before CPB. The control and treated rats were subjected to the evaluation of different kidney injury index and inflammation biomarkers. Results: Baicalin significantly attenuated CPB/CA-induced AKI in rats, as evidenced by the lower levels of serum creatinine, serum NGAL, and Kim1. Baicalin remarkably inhibited oxidative stress, reflected in the decreased malondialdehyde and myeloperoxidase activity, and enhanced superoxide dismutase activity and glutathione in renal tissue. Baicalin suppressed the expression of IL-18 and iNOS, and activated the Nrf2/HO-1 pathway. Conclusion: Our data indicated that baicalin mediated CPB/CA-induced AKI by decreasing the oxidative stress and inflammation in the renal tissues, and that baicalin possesses the potential to be developed as a therapeutic tool in clinical use for CSA-AKI.


2012 ◽  
Vol 63 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Xiu-Quan Shi ◽  
Wei Yan ◽  
Ke-Yue Wang ◽  
Qi-Yuan Fan ◽  
Yan Zou

We tested the hypothesis that dietary fi bre (DF) has protective effects against manganese (Mn)-induced neurotoxicity. Forty-eight one-month old Sprague-Dawley rats were randomly divided into six groups: control, 16 % DF, Mn (50 mg kg-1 body weight), Mn+ 4 % DF, Mn+ 8 % DF, and Mn+ 16 % DF. After oral administration of Mn (as MnCl2) by intragastric tube during one month, we determined Mn concentrations in the blood, liver, cerebral cortex, and stool and tested neurobehavioral functions. Administration of Mn was associated with increased Mn concentration in the blood, liver, and cerebral cortex and increased Mn excretion in the stool. Aberrations in neurobehavioral performance included increases in escape latency and number of errors and decrease in step-down latency. Irrespective of the applied dose, the addition of DF in forage decreased tissue Mn concentrations and increased Mn excretion rate in the stool by 20 % to 35 %. All neurobehavioral aberrations were also improved. Our fi ndings show that oral exposure to Mn may cause neurobehavioral abnormalities in adult rats that could be effi ciently alleviated by concomitant supplementation of DF in animal feed.


2016 ◽  
Vol 7 (3) ◽  
pp. 409-420 ◽  
Author(s):  
T.M. Marques ◽  
E. Patterson ◽  
R. Wall ◽  
O. O’Sullivan ◽  
G.F. Fitzgerald ◽  
...  

The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~109microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~109 L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (P<0.05), but did not alter other metabolic markers in healthy rats. Diabetes induced by STZ injection decreased body weight (P<0.05), increased intestinal length (P<0.05) and stimulated water and food intake. Insulin was decreased (P<0.05), whereas glucose was increased (P<0.001) in all diabetic groups, compared with non-diabetic controls. A decrease (P<0.01) in glucose levels was observed in diabetic rats receiving L. brevis DPC 6108, compared with diabetic-controls. Both the composition and diversity of the intestinal microbiota were affected by diabetes. Microbial diversity in diabetic rats supplemented with low GABA was not reduced (P>0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Sheng Cui ◽  
Kang Luo ◽  
Yi Quan ◽  
Sun Woo Lim ◽  
Chul-Woo Yang

Abstract Background and Aims We and others have recently demonstrated that Coenzyme Q10 (CoQ10) has protective effects against diabetes mellitus and various types of renal injury. This study investigated whether CoQ10-micelle treatment would affords superior renoprotection compared with CoQ10 in the governing tacrolimus (Tacrolimus)-induced renal injury in the rats. Method Male adult Sprague-dawley Rats were treated daily with Tacrolimus (1.5mg/kg/day, subcutaneous), CoQ10 (20mg/kg/day, oral), and CoQ10-micelle (20 mg/kg/day, oral) for 4 weeks. The effects of CoQ10 orCoQ10-micelle on Tac-induced renal injury were assessed in terms of renal function, histopathology, oxidative stress and apoptotic cell death. Results After 4 weeks of Tacrolimus treatment to rats caused renal dysfunction, typical pathologic lesions, and oxidative stress marker. The serum creatinine was reduced by Tac co-treatment with CoQ10 or CoQ10-micelle groups compared with the Tac and VH group (0.31 ± 0.03 in the VH group vs. 0.43 ± 0.041 in the Tac group vs.0.37 ± 0.031 in the Tac+CoQ10 group 0.30 ± 0.02123 in the Tac+CoQ10-micellegroup; 1P&lt;0.05 vs. VH. 2P&lt;0.05 vs. TAC. . 3P&lt;0.05 vs. TAC+C.) The administration of CoQ10-micelle improved renal immunoreactivity, which was accompanied by reductions in oxidative stress and apoptosis. Assessment of the mitochondrial ultrastructure by electron microscopy revealed that tacrolimus co-treatment with CoQ10-micelle increased the size and number of mitochondria more than co-treatment with CoQ10, compared with that induced by TAC treatment alone. Conclusion These findings suggest that both CoQ10 and CoQ10-micelle effectively attenuates Tac-induced renal injury, and CoQ10-micelle provides more benefits than that of CoQ10.


2014 ◽  
Vol 31 (4) ◽  
pp. 233-243
Author(s):  
Ivana Stojanović ◽  
Srđan Ljubisavljević ◽  
Ivana Stevanović ◽  
Slavica Stojnev ◽  
Radmila Pavlović ◽  
...  

Summary The aim of this study was to investigate the exogenous agmatine influence on nitrosative and oxidative stress parameters in acute phase of multiple sclerosis (MS) experimental model, experimental autoimmune encephalomyelitis (EAE). EAE was induced by subcutaneous injection of myelin basic protein (50 μg per animal). Sprague-Dawley rats were divided into five groups: I group - (CG), treated by PBS (i.p.), II group - (EAE), III group - (CFA), treated with Complete Freund’s adjuvant (0.2 ml subcutaneously), IV group - (EAE+AGM), treated by agmatine (75 mg/kg bw i.p.) upon EAE induction and V group - (AGM), received only agmatine in the same dose. The animals were treated every day during experiment - from day 0 to 15, and clinically scored every day. They were sacrificed on day 16 from MBP application. NO2+NO3, S-nitrosothiols (RSNO), malondyaldehide (MDA) and reduced glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were determined in rat whole encephalitic mass (WEM) and cerebellum homogenates. Agmatine exerted strong protective effects on EAE clinical symptoms (p<0.05). In EAE brain homogenates, NO2+NO3, RSNO and MDA concentrations were increased compared to CG values. Agmatine treatment diminished NO2+NO3, RSNO and MDA levels in EAE animals (p<0.05). In EAE rats, GSH level and SOD activity were decreased compared to CG values, but agmatine treatment increased both parameters compared to EAE untreated animals (p<0.05). Immunohistochemical staining supported the clinical and biochemical findings in all groups. The CNS changes in EAE are successfully supressed by agmatine application, which could be the the new aspect of the neuroprotective effects of agmatine.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 621-632 ◽  
Author(s):  
Qing Zhao ◽  
Jianyong Yin ◽  
Zeyuan Lu ◽  
Yiwei Kong ◽  
Guangyuan Zhang ◽  
...  

Background: Sulodexide is a powerful antithrombin agent with reno-protective property. However, whether it has beneficial effects on Contrast-Induced Nephropathy (CIN) remained elusive. In the current study, we evaluated the therapeutic effects of Sulodexide on CIN and investigated the potential mechanisms. Methods: CIN model was induced by intravenous injection of indomethacin, followed by Ioversol and L-NAME. Sprague-Dawley rats were divided into 4 groups: control group, CIN group, CIN+vehicle group (CIN rats pretreated with vehicle) and CIN+ Sulodexide (CIN rats pretreated with Sulodexide). Sulodexide or an equivalent volume of vehicle was intravenously delivered 30 min before the induction of CIN. All the animals were sacrificed at 24h after CIN and tissues were harvested to evaluate renal injury, kidney oxidative stress and apoptosis levels. Plasma antithrombin III (ATIII) activities were also measured. Results: Compared to the untreated CIN group, improved renal function, reduced tubular injury, decreased levels of oxidative stress and apoptosis were observed in CIN rats receiving Sulodexide injection. In addition, we also found that ATIII activity was significantly higher in Sulodexide-administered group than that in vehicle-injected CIN rats. For in vitro studies, HK2 cells were exposed to Ioversol and the cyto-protective effects of Sulodexide were also determined. Sulodexide pretreatment protected HK2 cells against the cytotoxicity of Ioversol via inhibiting caspase-3 activity. Preincubation with Sulodexide could also attenuate H2O2-induced increases in ROS, apoptosis and caspase-3 levels. Conclusions: Taken together, Sulodexide could protect against CIN through activating ATIII, and inhibiting oxidative stress, inflammation and apoptosis.


2021 ◽  
Author(s):  
Mohammad Sheibani ◽  
Hedyeh Faghir-Ghanesefat ◽  
Yaser Azizi ◽  
Tahmineh Mokhtari ◽  
Hasan Yousefi‐Manesh ◽  
...  

The clinical use of doxorubicin as a potent chemotherapeutic agent is limited due to its dose-dependent cardiotoxicity. Oxidative stress and inflammatory pathways have a pivotal role in doxorubicin-induced cardiotoxicity. Sumatriptan, a 5-hydroxytryptamine (5-HT)1B/1D agonist that is mainly used to relieve migraine pain, has suggested exerting protective effects in numerous pathological conditions through antiinflammatory properties. The aim of the present study was to investigate the effects of sumatriptan on doxorubicin-induced cardiotoxicity and the contribution of anti-inflammation and antioxidative responses. Cardiotoxicity was induced by the administration of doxorubicin three times a week (2.5 mg/kg i.p) for two consecutive weeks on male rats. The animals were divided into four groups, including Control, Sumatriptan (0.1 mg/kg) received group, doxorubicin received group, and Doxorubicin+Sumatriptan (0.1 mg/kg) received group. Sumatriptan was administered 30 min before every injection of doxorubicin. On the last day of the second week, the body weight, mortality rate, electrocardiogram (ECG) and histopathological changes, cardiac inotropic study, and biochemical factors were evaluated. The loss of body weight, mortality rate, ECG parameters, reduction of papillary muscle contractility force as well as histopathological scores following administration of doxorubicin indicated severe cardiac damage. However, treatment with sumatriptan inhibited the functional and structural impairment induced by doxorubicin. In addition, sumatriptan could significantly reduce cardiac tissue levels of malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α), which were increased in the doxorubicin-treated rats. This study illustrated the protective effects of sumatriptan on decreasing doxorubicin-induced cardiac toxicity and mortality rate in part through inhibition of inflammatory and oxidative stress pathways.


2003 ◽  
Vol 284 (6) ◽  
pp. R1560-R1566 ◽  
Author(s):  
Amit Varma ◽  
Jing He ◽  
Lisa Weissfeld ◽  
Sherin U. Devaskar

We investigated the effect of repetitive postnatal (2–7 days) intracerebroventricular administration of neuropeptide Y (NPY) on food intake and body weight gain in the 3- to 120-day-old Sprague-Dawley rats. NPY caused a 32% transient increase in body weight gain with elevated circulating insulin concentrations within 24 h. This early intervention led to the persistence of hyperinsulinemia and relative hyperleptinemia with euglycemia in the 120-day-old female alone. This perturbation was associated with 50% suppression in adult female hypothalamic NPY concentrations and a 50–85% decline in NPY immunoreactivity in the paraventricular and arcuate nuclei. This change was paralleled by a ∼20% decline in food intake and body weight gain at 60 and 120 days. However, when exogenous NPY was stereotaxically reinjected into the paraventricular nucleus of the ∼120-day-old adult females who were pretreated with NPY postnatally, an increase in food intake and body weight gain was noted, attesting to no disruption in the NPY end-organ responsivity. We conclude that postnatal intracerebroventricular NPY has long-lasting effects that predetermine the resultant adult phenotype in a sex-specific manner.


Sign in / Sign up

Export Citation Format

Share Document