scholarly journals Antidiabetic Effects ofCarassius auratusComplex Formula in High Fat Diet Combined Streptozotocin-Induced Diabetic Mice

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhi-Hong Wang ◽  
Cheng-Chin Hsu ◽  
Hui-Hsuan Lin ◽  
Jing-Hsien Chen

Carassius auratuscomplex formula, includingCarassius auratus, Rhizoma dioscoreae,Lycium chinense, andRehmannia glutinosaLibosch, is a combination prescription of traditional Chinese medicine, which has always been used to treat diabetes mellitus in ancient China. In this study, we provided experimental evidence for the use ofCarassius auratuscomplex formula in the treatment of high fat diet combined streptozotocin- (STZ-) induced type 2 diabetes.Carassius auratuscomplex formula aqueous extract was prepared and the effects of it on blood glucose, serum insulin, adipose tissue weight, oral glucose tolerance test (OGTT), total cholesterol, and triglyceride (TG) levels in mice were measured. Moreover, adiponectin, TG synthesis related gene expressions, and the inhibitory effect of aldose reductase (AR) were performed to evaluate its antidiabetic effects. After the 8-week treatment, blood glucose, insulin levels, and adipose tissue weight were significantly decreased. OGTT and HOMA-IR index showed improved glucose tolerance. It could also lower plasma TG, TC, and liver TG levels. Furthermore,Carassius auratuscomplex formula could inhibit the activity of AR and restore adiponectin expression in serum. Based on these findings, it is suggested thatCarassius auratuscomplex formula possesses potent anti-diabetic effects on high fat diet combined STZ-induced diabetic mice.

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2501
Author(s):  
Maihemuti Mijiti ◽  
Ryosuke Mori ◽  
Bingyu Huang ◽  
Kenichiro Tsukamoto ◽  
Keisuke Kiriyama ◽  
...  

Dietary protamine can ameliorate hyperlipidemia; however, the protamine-derived active peptide and its hypolipidemic mechanism of action are unclear. Here, we report the discovery of a novel anti-obesity and hypocholesterolemic peptide, RPR (Arg-Pro-Arg), derived from protamine in mice fed a high-fat diet for 50 days. Serum cholesterol levels were significantly lower in the protamine and RPR groups than in the control group. White adipose tissue weight was significantly decreased in the protamine and RPR groups. The fecal excretion of cholesterol and bile acid was significantly higher in the protamine and RPR groups than in the control group. We also observed a significant decrease in the expression of hepatic SCD1, SREBP1, and adipocyte FAS mRNA, and significantly increased expression of hepatic PPARα and adipocyte PPARγ1 mRNA in the protamine group. These findings demonstrate that the anti-obesity effects of protamine are linked to the upregulation of adipocyte PPARγ1 and hepatic PPARα and the downregulation of hepatic SCD1 via SREBP1 and adipocyte FAS. RPR derived from protamine has a crucial role in the anti-obesity action of protamine by evaluating the effective dose of adipose tissue weight loss.


2013 ◽  
Vol 77 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Yukako OKAZAKI ◽  
Novita Vivi SITANGGANG ◽  
Satoko SATO ◽  
Nanae OHNISHI ◽  
Junji INOUE ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 560 ◽  
Author(s):  
Ran Okouchi ◽  
Yuto Sakanoi ◽  
Tsuyoshi Tsuduki

We investigated whether the difference in miso consumption between the Japanese diets of 1975 and 2010 has influenced the observed increase in diet-induced obesity. To recreate the 2010 and 1975 Japanese high-fat diets with the corresponding proportions of miso, freeze-dried miso was added to high-fat mouse feed at 1.6% and 2.6%, respectively. When 5-week-old male Institute of Cancer Research (ICR) mice were provided each of these diets ad libitum for 8 weeks, it was found that the white adipose tissue weight and adipocyte area were lower in mice receiving the 1975 diet than in those receiving the 2010 diet. Therefore, high miso consumption is one reason why the 1975 Japanese diet tended to not lead to obesity. Next, the combined effects of treadmill exercise and miso consumption were investigated. The mice were divided into three groups, which were provided either a high-fat diet (group C), a high-fat diet with exercise (group C + E), or a miso-supplemented high-fat diet with exercise (group M + E) for 8 weeks. In this experiment, the white adipose tissue weight and adipocyte area in group M + E were lower than in group C. When the mRNA expression of lipid metabolism-associated genes in adipose tissue was measured, we found that expression of Hsl (lipase, hormone sensitive), which is involved in lipolysis, and Pparγ (peroxisome proliferator activated receptor gamma), which regulates adipocyte differentiation upstream of Hsl, was increased in group M + E. These results clearly demonstrated that lipid accumulation in the adipose tissues is suppressed by miso consumption in combination with exercise.


2012 ◽  
Vol 518-523 ◽  
pp. 498-501
Author(s):  
Ke Yue Liu

Effects of the ethanol extracts prepared from Salix babylonica L. leaves on the fat deposit induced in mice by feeding a high-fat-diet for 9 wks were studied. Increase in body weight and parametrial adipose tissue weight containing 2,5 or 10g (extract) /kg food was suppressed as compared to that observed in mice fed the high-fat-diet alone. Futhermore, the enthanol extract inhibited the elevation of blood triacylglycerol in rats administered orally a lipid emulsion as compared to that in rats given the emulsion alone. Experiments are now undergoing to isolate other ingredients from the extract and test them for anti-obesity effects.


2009 ◽  
Vol 56 (7) ◽  
pp. 403-411 ◽  
Author(s):  
Hiroyuki Inagaki ◽  
Masanori Sugitani ◽  
Yuko Setoguchi ◽  
Ryouichi Ito ◽  
Yukihiro Oritani ◽  
...  

1984 ◽  
Vol 247 (2) ◽  
pp. R328-R334 ◽  
Author(s):  
G. N. Wade ◽  
T. J. Bartness

Two experiments examined the effects of photoperiod, melatonin, and diet on body weight in female Syrian hamsters (Mesocricetus auratus). In experiment 1, daily injections of 25 micrograms melatonin increased body weight when given 3 h before lights-out but not when given at the midpoint of the light phase, in a 16-h light-8-h dark cycle (LD 16:8). Ten micrograms of melatonin, given 3 h before lights-out, were sufficient to increase body weight and fat content, to increase interscapular brown adipose tissue weight, to decrease uterine weight, and to interrupt estrous cyclicity. However, 2.5 micrograms of melatonin increased body weight and fat content without affecting brown adipose tissue weight or reproductive function. In experiment 2, melatonin treatment, exposure to a short photoperiod (LD 8:16), and feeding a high-fat diet increased body weight gain in weanling (25-day-old) female hamsters. When melatonin treatment or high-fat diet were withdrawn, hamsters reduced their food intake, and their body weight and fat content returned to control levels. After 15-17 wk in the short photoperiod, hamsters also began to undereat, and their body weight and fat content returned to control levels. These findings suggest several conclusions. 1) As with the changes in reproductive function, melatonin is effective at increasing body weight only when given at certain times of day. 2) Not all end points are equally responsive to melatonin, suggesting that they are independent of one another. 3) Weanling hamsters respond to photoperiod, melatonin, and diet just as adults do. 4) The striking obesities induced by these manipulations are completely reversible.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2262 ◽  
Author(s):  
Kim ◽  
Jang ◽  
Lee

: Allium hookeri (AH) is widely consumed as a herbal medicine. It possesses biological activity against metabolic diseases. The objective of this study was to investigate effects of AH root water extract (AHR) on adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice. AHR inhibited lipid accumulation during adipocyte differentiation by downregulation of gene expression, such as hormone sensitive lipase (HSL), lipoprotein lipase (LPL) and an adipogenic gene, CCAAT/enhancer binding protein-α in 3T3-L1 preadipocytes. Oral administration of AHR significantly suppressed body weight gain, adipose tissue weight, serum leptin levels, and adipocyte cell size in HFD-induced obese mice. Moreover, AHR significantly decreased hepatic mRNA expression levels of cholesterol synthesis genes, such as 3-hydroxy-3-methylglutaryl CoA reductase, sterol regulatory element-binding transcription factor (SREBP)-2, and low-density lipoprotein receptor, as well as fatty acid synthesis genes, such as SREBP-1c and fatty acid synthase. Serum triglyceride levels were also lowered by AHR, likely as a result of the upregulating gene involved in fatty acid β-oxidation, carnitine palmitoyltransferase 1a, in the liver. AHR treatment activated gene expression of peroxisome proliferator-activated receptor-γ, which might have promoted HSL and LPL-medicated lipolysis, thereby reducing white adipose tissue weight. In conclusion, AHR treatment can improve metabolic alterations induced by HFD in mice by modifying expression levels of genes involved in adipogenesis, lipogenesis, and lipolysis in the white adipose tissue and liver.


1995 ◽  
Vol 73 (3) ◽  
pp. 433-441 ◽  
Author(s):  
S. Kato ◽  
K.-I. Karino ◽  
S. Hasegawa ◽  
J. Nagasawa ◽  
A. Nagasaki ◽  
...  

The effect of dietary octacosanol, a long-chain alcohol, on lipid metabolism was investigated in rats fed on a high-fat diet for 20 d. The addition of octacosanol (10 g/kg diet) to the high-fat diet led to a significant reduction (P < 0·05) in the perirenal adipose tissue weight without decrease of the cell number, suggesting that octacosanol may suppress lipid accumulation in this tissue, whereas no effect was seen in the epididymal adipose tissue weight and in the lipid content in liver. Octacosanol supplementation decreased the serum triacylglycerol concentration, and enhanced the concentration of serum fatty acids, probably through inhibition of hepatic phosphatidate phosphohydrolase (EC 3·1·3·4). Though the activity of hormone-sensitive lipase (EC 3·1·1·3) was not influenced by octacosanol, higher activities of lipoprotein lipase (EC 3·1·1·34) in the perirenal adipose tissue and the total oxidation rate of fatty acid in muscle were observed. Lipid absorption was not affected by the inclusion of octacosanol. Thus, the present results suggest that the dietary incorporation of octacosanol into a high-fat diet affects some aspects of lipid metabolism.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A806-A806
Author(s):  
Rachel Bell ◽  
Elisa Villalobos ◽  
Mark Nixon ◽  
Allende Miguelez-Crespo ◽  
Matthew Sharp ◽  
...  

Abstract Glucocorticoids play a critical role in metabolic homeostasis. Chronic or excessive activation of the glucocorticoid receptor (GR) in adipose tissue contributes to metabolic disorders such as glucose intolerance and insulin resistance. Steroid-metabolising enzymes in adipose, such as 11β-HSD1 or 5α-reductase, modulate the activation of GR by converting primary glucocorticoids into more or less potent ligands. Carbonyl reductase 1 (CBR1) is a novel regulator of glucocorticoid metabolism, converting corticosterone/cortisol to 20β-dihydrocorticosterone/cortisol (20β-DHB/F); a metabolite which retains GR activity. CBR1 is abundant in adipose tissue and increased in obese adipose of mice and humans1 and increased Cbr1 expression is associated with increased fasting glucose1. We hypothesised that increased Cbr1/20β-DHB in obese adipose contributes to excessive GR activation and worsens glucose tolerance. We generated a novel murine model of adipose-specific Cbr1 over-expression (R26-Cbr1Adpq) by crossing conditional knock-in mice with Adiponectin-Cre mice. CBR1 protein and activity were doubled in subcutaneous adipose tissue of male and female R26-Cbr1Adpq mice compared with floxed controls; corresponding to a two-fold increase 20β-DHB (1.6 vs. 4.2ng/g adipose; P=0.0003; n=5-7/group). There were no differences in plasma 20β-DHB or corticosterone. Bodyweight, lean or fat mass, did not differ between male or female R26-Cbr1Adpq mice and floxed controls. Lean male R26-Cbr1Adpq mice had higher fasting glucose (9.5±0.3 vs. 8.4±0.3mmol/L; P=0.04) and worsened glucose tolerance (AUC 1819±66 vs. 1392±14; P=0.03). Female R26-Cbr1Adpq mice also had a worsened glucose tolerance but fasting glucose was not altered with genotype. There were no differences in fasting insulin or non-esterified fatty acid between genotypes in either sex. Expression of GR-induced genes Pnpla2, Gilz and Per1, were increased in adipose of R26-Cbr1Adpq mice. Following high-fat diet induced obesity, no differences in bodyweight, lean or fat mass, with genotype were observed in male and female mice, and genotype differences in fasting glucose and glucose tolerance were abolished. In conclusion, adipose-specific over-expression of Cbr1 in lean male and female mice led to increased levels of 20β-DHB in adipose but not plasma, and both sexes having worsened glucose tolerance. The influence of adipose CBR1/20β-DHB on glucose tolerance was not associated with altered fat mass or bodyweight and was attenuated by high-fat diet-induced obesity. These metabolic consequences of Cbr1 manipulation require careful consideration given the wide variation in CBR1 expression in the human population, the presence of inhibitors and enhancers in many foodstuffs and the proposed use of inhibitors as an adjunct for cancer treatment regimens. Reference: Morgan et al., Scientific Reports. 2017; 7.


Sign in / Sign up

Export Citation Format

Share Document