scholarly journals Gene Expression Profile Analysis in Epilepsy by Using the Partial Least Squares Method

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Dong Wang ◽  
Xixiao Song ◽  
Yan Wang ◽  
Xia Li ◽  
Shanshan Jia ◽  
...  

Purpose. Epilepsy is a common chronic neurological disorder. We aim to investigate the underlying mechanism of epilepsy with partial least squares- (PLS-) based gene expression analysis, which is more sensitive than routine variance/regression analysis.Methods. Two microarray data sets were downloaded from the Gene Expression Omnibus (GEO) database. PLS analysis was used to identify differentially expressed genes. Gene ontology and network analysis were also implemented.Results. A total of 752 genes were identified to be differentially expressed, including 575 depressed and 177 overexpressed genes in patients. For GO enrichment analysis, except for processes related to the nervous system, we also identified overrepresentation of dysregulated genes in angiogenesis. Network analysis revealed two hub genes,CUL3andEP300, which may serve as potential targets in further therapeutic studies.Conclusion. Our results here may provide new understanding for the underlying mechanisms of epilepsy pathogenesis and will offer potential targets for producing new treatments.

2020 ◽  
Author(s):  
Huidong Liu ◽  
Wen-wen Zhang ◽  
Ge Lou

Abstract Background: N6-methyladenosine(m6A) is one of the most common RNA modifications that occurs at the nitrogen-6 position of adenine. Emerging evidence has revealed that regulatory functions of m6A play an essential role in the development of cancer. However the study of m6A in ovarian cancer(OC) is still in our infancy. In this work ,we aimed to identify and analysis the differentially expressed genes(DEGs) modified by m6A which can provide new therapeutic targets and key biomarkers in OC.Methods: We downloaded Microarray datasets GSE146553 and GSE124766 from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified by GEO2R analysis tools. Subsequently, The DAVID database was used to construct Enrichment analysis of GO and KEGG pathways. Next, the DEGs modified by m6A were identified by m6AVar database. Finally, the functional analysis and clinical sample validation of these genes were verified by ONCOMINE, GEPIA, cBioPortal online platform and Kaplan-Meier Plotter.Results:152 DEGs were selected ,and the DEGs were mainly enriched in extracellular exosome, spindle microtubule, response to hypoxia and cell cycle .And we identified 15 DEGs which were modified by m6A:MAPK10、MXRA5、CHD7、MECOM、SCN7A、GREB、PRUNE2、MX2、TOP2A、JAM2、DST、LAPTM5、CDKN2A、GATM and ANGPTL1. After statistical analysis, two DEGs (SCN7A and GAMT) were selected for detailed study. We revealed that SCN7A and GAMT were expressed at a low level in OC. Afterwards, Survival analysis showed that SCN7A and GAMT expression were correlated with OC overall survival. And the expression of SCN7A and GAMT mRNA decreasing in different TNM stages. Finally, we presumed that the modification of m6A spongs GAMT via EIF4A3 or FUS to participate in the occcurrence and the development of OC.Conclusion: Altogether, the current study identified and analysised the DEGs modified by m6A in OC. It will help us to investigate the underlying mechanism and progression of OC. In addition, it can provide new diagnostic markers and potential therapeutic targets in OC.


2021 ◽  
Vol 36 ◽  
pp. 153331752110217
Author(s):  
Liu Lu ◽  
Wen-Zhuo Dai ◽  
Xi-Chen Zhu ◽  
Tao Ma

This paper was aimed to analyze the microRNA (miRNA) signatures in Alzheimer disease (AD) and find the significant expressions of miRNAs, their target genes, the functional enrichment analysis of the confirmed genes, and potential drug treatment. The miRNA expression information of the gene expression profile data was downloaded from the Gene Expression Omnibus database. The total data sample size is 1309, including 1021 AD samples and 288 normal samples. A total of 21 differentially expressed miRNAs were obtained, of which 16 (hsa-miR-6761-3p, hsa-miR-6747-3p, hsa-miR-6875-3p, hsa-miR-6754-3p, hsa-miR-6736-3p, hsa-miR-6762-3p, hsa-miR-6787-3p, hsa-miR-208a-5p, hsa-miR-6740-3p, hsa-miR-6778-3p, hsa-miR-595, hsa-miR-6753-3p, hsa-miR-4747-3p, hsa-miR-3646, hsa-miR-6716-3p and hsa-miR-4435) were up-regulated and 5 (hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-6131 and hsa-miR-125b-1-3p) were down-regulated in AD. A total of 6 miRNAs (hsa-miR-595, hsa-miR-3646, hsa-miR-4435 hsa-miR-125a-3p, hsa-miR-22-3p and hsa-miR-24-3p) and 78 miRNA-disease-related gene sub-networks were predicted, and 116 ceRNA regulatory relationship pairs, and the ceRNA regulatory network were obtained. The results of enrichment analysis suggested that the main target pathways of several miRNAs differentially expressed in AD were mitogen-activated protein kinase signal pathway. According to the prediction results of Drug-Gene Interaction database 2.0, we obtained 53 pairs of drug-gene interaction, including 7 genes (PTGS2, EGFR, CALM1, PDE4D, FGFR2, HMGCR, cdk6) and 53 drugs. We hope our results are helpful to find a viable way to prevent, delay the onset, diagnose, and treat AD.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Donggen Zhong

We aimed to investigate differentially expressed genes (DEGs) in different stages after femoral fracture based on rat models, providing the basis for the treatment of sport-related fractures. Gene expression data GSE3298 was downloaded from Gene Expression Omnibus (GEO), including 16 chips. All femoral fracture samples were classified into earlier fracture stage and later fracture stage. Total 87 DEGs simultaneously occurred in two stages, of which 4 genes showed opposite expression tendency. Out of the 4 genes,RestandCst8were hub nodes in protein-protein interaction (PPI) network. The GO (Gene Ontology) function enrichment analysis verified that nutrition supply related genes were enriched in the earlier stage and neuron growth related genes were enriched in the later stage. Calcium signaling pathway was the most significant pathway in earlier stage; in later stage, DEGs were enriched into 2 neurodevelopment-related pathways. Analysis of Pearson's correlation coefficient showed that a total of 3,300 genes were significantly associated with fracture time, none of which was overlapped with identified DEGs. This study suggested thatRestandCst8might act as potential indicators for fracture healing. Calcium signaling pathway and neurodevelopment-related pathways might be deeply involved in bone healing after femoral fracture.


2020 ◽  
Author(s):  
Xiaoqing Guan ◽  
Zhiyuan Guan ◽  
Jiafu Ji ◽  
Chunli Song

Abstract Background : Osteosarcoma (OS) is the most common malignant tumor of bone which was featured with osteoid or immature bone produced by the malignant cells, and biomarkers are urgently needed to identify patients with this aggressive disease. Methods : We downloaded gene expression profiles from Gene Expression Omnibus (GEO) and The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) datasets for OS, respectively, and performed weighted gene co-expression network analysis (WGCNA) to identify the key module. Whereafter, functional annotation and Gene Set Enrichment Analysis (GSEA) demonstrated the relationships between target genes and OS. Results : In this study, we discovered four key genes – ALOX5AP, HLA-DMB, HLA-DRA and SPINT2 as new prognostic markers and confirmed their relationship with OS metastasis in the validation set. Conclusions : Overall, our work may shed light on the roles of ALOX5AP, HLA-DMB, HLA-DRA and SPINT2, thus providing valuable clues to investigate the metastasis of OS and corroborating the potential clinical application value of the 4-gene signature to some extent.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hanxi Wan ◽  
Xinwei Huang ◽  
Peilin Cong ◽  
Mengfan He ◽  
Aiwen Chen ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a progressive disease whose etiology remains unknown. The purpose of this study was to explore hub genes and pathways related to IPF development and prognosis. Multiple gene expression datasets were downloaded from the Gene Expression Omnibus database. Weighted correlation network analysis (WGCNA) was performed and differentially expressed genes (DEGs) identified to investigate Hub modules and genes correlated with IPF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were performed on selected key genes. In the PPI network and cytoHubba plugin, 11 hub genes were identified, including ASPN, CDH2, COL1A1, COL1A2, COL3A1, COL14A1, CTSK, MMP1, MMP7, POSTN, and SPP1. Correlation between hub genes was displayed and validated. Expression levels of hub genes were verified using quantitative real-time PCR (qRT-PCR). Dysregulated expression of these genes and their crosstalk might impact the development of IPF through modulating IPF-related biological processes and signaling pathways. Among these genes, expression levels of COL1A1, COL3A1, CTSK, MMP1, MMP7, POSTN, and SPP1 were positively correlated with IPF prognosis. The present study provides further insights into individualized treatment and prognosis for IPF.


2020 ◽  
Vol 26 (29) ◽  
pp. 3619-3630
Author(s):  
Saumya Choudhary ◽  
Dibyabhaba Pradhan ◽  
Noor S. Khan ◽  
Harpreet Singh ◽  
George Thomas ◽  
...  

Background: Psoriasis is a chronic immune mediated skin disorder with global prevalence of 0.2- 11.4%. Despite rare mortality, the severity of the disease could be understood by the accompanying comorbidities, that has even led to psychological problems among several patients. The cause and the disease mechanism still remain elusive. Objective: To identify potential therapeutic targets and affecting pathways for better insight of the disease pathogenesis. Method: The gene expression profile GSE13355 and GSE14905 were retrieved from NCBI, Gene Expression Omnibus database. The GEO profiles were integrated and the DEGs of lesional and non-lesional psoriasis skin were identified using the affy package in R software. The Kyoto Encyclopaedia of Genes and Genomes pathways of the DEGs were analyzed using clusterProfiler. Cytoscape, V3.7.1 was utilized to construct protein interaction network and analyze the interactome map of candidate proteins encoded in DEGs. Functionally relevant clusters were detected through Cytohubba and MCODE. Results: A total of 1013 genes were differentially expressed in lesional skin of which 557 were upregulated and 456 were downregulated. Seven dysregulated genes were extracted in non-lesional skin. The disease gene network of these DEGs revealed 75 newly identified differentially expressed gene that might have a role in development and progression of the disease. GO analysis revealed keratinocyte differentiation and positive regulation of cytokine production to be the most enriched biological process and molecular function. Cytokines -cytokine receptor was the most enriched pathways. Among 1013 identified DEGs in lesional group, 36 DEGs were found to have altered genetic signature including IL1B and STAT3 which are also reported as hub genes. CCNB1, CCNA2, CDK1, IL1B, CXCL8, MKI 67, ESR1, UBE2C, STAT1 and STAT3 were top 10 hub gene. Conclusion: The hub genes, genomic altered DEGs and other newly identified differentially dysregulated genes would improve our understanding of psoriasis pathogenesis, moreover, the hub genes could be explored as potential therapeutic targets for psoriasis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xie ◽  
Xiaofeng Hang ◽  
Wensheng Xu ◽  
Jing Gu ◽  
Yuanjing Zhang ◽  
...  

Abstract Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S516-S517
Author(s):  
Kulachanya Suwanwongse ◽  
Nehad Shabarek

Abstract Background Human immunodeficiency virus (HIV) disease progression are different among genders, in which women usually progress to acquired immunodeficiency syndrome (AIDS) faster than men. The mechanisms resulting in the gender biases of HIV progression are unclear. We conducted a bioinformatics analysis of differentially expressed genes (DEGs) in women and men with HIV disease to understand the sex-based differences in HIV pathogenesis. Methods We obtained microarray data from the Gene Expression Omnibus (GEO) database using our pre-defined search strategy and analyzed data using the GEO2R platform. The t-test was done to compare DEGs between females and males with HIV diseases. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was implemented to systematically extract biological features and processes of retrieving DEGs via gene ontology (GO) analysis. A Systemic search was performed to evaluate each DEG function and its possible association with HIV. Results One gene expression profiling data were retrieved: GSE 140713, composed of 40 males and 10 females with HIV1 infected samples. A GEO2R analysis yielded 19 DEGs (Table 1). The GO analysis result was demonstrated in Tables 2 and 3. Following a systemic search, we found two DEGs, which have previous studies reported an association with HIV: DDX3X (20 studies) and PDS5 (1 study). We proposed DDX3X (t 5.3, p 0.0037) is responsible for gender inequalities of HIV progression because of: 1. DDX3X is needed in the HIV1 life cycle. 2. Several studies confirmed a positive correlation between DDX3X expression and HIV1 replication. 3. Our study found an up-regulated DDX3X expression in women corresponded to the fact that women progress to AIDS faster than men. 4. Our GO analysis showed female up-regulated genes were enriched in positive regulation of the gene expression pathway, which can be explained by DDX3X and its underlying mechanism. Table 1: DEGs in women and men with HIV1 disease Table 2: GO functional enrichment pathway analyses of overall retrieving DEGs Table 3: GO functional enrichment pathway analyses of down- and up-regulated clusters of DEGs Conclusion Aberrant DDX3X expression may contribute to sex-based differences in HIV disease. Drugs modifying DDX3X gene expression will be beneficial in the treatment of HIV especially resolving the HIV drug resistance problem because current anti-HIV drugs target viral components posed the risk of viral mutation. Disclosures All Authors: No reported disclosures


Sign in / Sign up

Export Citation Format

Share Document