scholarly journals CircFAM13B promotes the proliferation of hepatocellular carcinoma by sponging miR-212, upregulating E2F5 expression and activating the P53 pathway

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xie ◽  
Xiaofeng Hang ◽  
Wensheng Xu ◽  
Jing Gu ◽  
Yuanjing Zhang ◽  
...  

Abstract Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC.

2019 ◽  
Vol 28 (1_suppl) ◽  
pp. 76S-86S ◽  
Author(s):  
Zengyuan Zhou ◽  
Yuzheng Li ◽  
Haiyue Hao ◽  
Yuanyuan Wang ◽  
Zihao Zhou ◽  
...  

Hepatocellular carcinoma (HCC) is a widespread, common type of cancer in Asian countries, and the need for biomarker-matched molecularly targeted therapy for HCC has been increasingly recognized. However, the effective treatment for HCC is unclear. Therefore, identifying additional hub genes and pathways as novel prognostic biomarkers for HCC is necessary. In this study, the expression profiles of GSE121248, GSE45267 and GSE84402 were obtained from the Gene Expression Omnibus (GEO), including 132 HCC and 90 noncancerous liver tissues. Differentially expressed genes (DEGs) between HCC and noncancerous samples were identified by GEO2 R and Venn diagrams. In total, 109 DEGs were identified in these datasets, including 24 upregulated genes and 85 downregulated genes. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) preliminary analyses of the DEGs were performed using DAVID. The protein–protein interaction (PPI) network of the DEGs was constructed with the Search Tool for the Retrieval of Interacting Genes (STRING) and visualized in Cytoscape. Module analysis of the PPI network was performed using MCODE to get hub genes. Moreover, the influence of the hub genes on overall survival was determined with Kaplan–Meier plotter. All hub genes were analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) and KEGG. Overall, the hub genes DTL, CDK1, CCNB1, RACGAP1, ECT2, NEK2, BUB1B, PBK, TOP2A, ASPM, HMMR, RRM2, CDKN3, PRC1, and ANLN were upregulated in HCC, and the survival rate was lower for HCC with increased expression of these hub genes. CCNB1, CDK1, and RRM2 were enriched in the p53 signaling pathway, and CCNB1, CDK1, and BUB1B were enriched in the cell cycle. In brief, we screened 15 hub genes and pathways to identify potential prognostic markers for HCC treatment. However, the specific occurrence and development of HCC with expression of the hub genes should be verified in vivo and in vitro.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2008 ◽  
Vol 20 (1) ◽  
pp. 82
Author(s):  
M. Paczkowski ◽  
C. Bidwell ◽  
D. Spurlock ◽  
J. Waddell ◽  
R. L. Krisher

The in vitro culture environment significantly impacts nuclear maturation, fertilization, embryonic development, and epigenetic competence; however, our knowledge of the effects of in vitro maturation on oocyte developmental competence, and specifically cytoplasmic maturation, is limited. The objective of this experiment was to identify alterations in the transcriptome of oocytes matured in vitro compared to those matured in vivo that correlate to developmental competence. Immature oocytes were collected from Day 26 and 7-8-week-old B6D2F1 mice 48 h post-pregnant mare serum gonadotropin (PMSG) administration and matured for 16 h in Gmat supplemented with 0.5 mm citric acid, 0.5 mm cysteamine, 100 ng mL–1 epidermal growth factor (EGF), 0.05% insulin-transferrin-selenium (ITS; v/v), 0.01% recombumin (v/v) and 2 mg mL–1 fetuin. In vivo-matured oocytes from females of the same ages were collected from the oviducts 62 h post-PMSG and 14 h post-hCG and mating to vasectomized males. In vivo- and in vitro-matured oocytes were identified visually by the presence of the first polar body. Mature oocytes were pooled into three groups of 150 oocytes per treatment and lysed; poly A+ RNA was extracted. Samples were processed through two cycles of linear amplification and hybridized to the GeneChip� Mouse Genome 430 2.0 Array (Affymetrix, Inc., Santa Clara, CA, USA), with three arrays per treatment. Microarray data were sorted and filtered to include genes that were classified as having two present calls per treatment. The data were then normalized to the chip median and analyzed using a one-way analysis of variance; the level of significance was calculated at P < 0.01. In total, 2.17% (482/22170) and 1.61% (358/22170) of genes were differentially expressed between in vitro- and in vivo-matured oocytes in Day 26 and 7–8-week-old mice, respectively. However, 72.82% (351/482) and 67.87% (243/358) of differentially expressed genes had increased abundance in the in vitro- and in vivo-matured oocytes, respectively. Transcripts involved in gene expression, cellular growth and proliferation, and cellular development were increased in in vivo-matured oocytes from both age groups compared to those matured in vitro. Cell death was one of the higher ranking functional groups increased in the 7–8-week-old in vitro-matured oocytes compared to the 7–8-week-old in vivo-matured oocytes. Specific genes altered by in vitro maturation conditions in Day 26 oocytes were DNA methyltransferase 1 (>7-fold increase in vivo), caspase 8 (>4-fold increase in vivo), and eukaryotic translation initiation factor 1B (>4-fold increase in vivo). DNA methyltransferase 1 and ubiquitin-conjugating enzyme E2T were significantly increased in in vivo-matured 7–8-week-old oocytes (>3-fold and >5-fold, respectively). These results indicate that gene expression is altered in oocytes matured in vitro compared to those matured in vivo. Based on the functional annotations of genes differentially expressed, dysregulation of gene expression in the oocyte resulting in altered DNA methylation and an up-regulation in cell death pathways are potential developmental mechanisms influenced by in vitro culture conditions that correlate to reduced embryonic developmental potential.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1473
Author(s):  
Mohamed Zaiou

Circular RNAs (circRNAs) are genome transcripts that are produced from back-splicing of specific regions of pre-mRNA. These single-stranded RNA molecules are widely expressed across diverse phyla and many of them are stable and evolutionary conserved between species. Growing evidence suggests that many circRNAs function as master regulators of gene expression by influencing both transcription and translation processes. Mechanistically, circRNAs are predicted to act as endogenous microRNA (miRNA) sponges, interact with functional RNA-binding proteins (RBPs), and associate with elements of the transcriptional machinery in the nucleus. Evidence is mounting that dysregulation of circRNAs is closely related to the occurrence of a range of diseases including cancer and metabolic diseases. Indeed, there are several reports implicating circRNAs in cardiovascular diseases (CVD), diabetes, hypertension, and atherosclerosis. However, there is very little research addressing the potential role of these RNA transcripts in the occurrence and development of obesity. Emerging data from in vitro and in vivo studies suggest that circRNAs are novel players in adipogenesis, white adipose browning, obesity, obesity-induced inflammation, and insulin resistance. This study explores the current state of knowledge on circRNAs regulating molecular processes associated with adipogenesis and obesity, highlights some of the challenges encountered while studying circRNAs and suggests some perspectives for future research directions in this exciting field of study.


2018 ◽  
Vol 18 (5) ◽  
pp. 667-674 ◽  
Author(s):  
Didem Sohretoglu ◽  
Shile Huang

The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms.


2020 ◽  
Vol 29 ◽  
pp. 096368972092614
Author(s):  
Ji-Hai Wang ◽  
Xue-Jian Wu ◽  
Yong-Zhuang Duan ◽  
Feng Li

Circular RNAs (circRNAs) act crucial roles in the progression of multiple malignancies including osteosarcoma (OS). But, the underlying mechanisms by which hsa_circ_0017311 (circCNST) contributes to the tumorigenesis of OS remain poorly understood. Our present study aimed to explore the role and mechanisms of circCNST in OS tumorigenesis. The differentially expressed circRNAs were identified by the Gene Expression Omnibus database. The association of circCNST with clinicopathological features and prognosis in patients with OS was analyzed by RNA fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (PCR) analysis. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation assays, and a xenograft tumor model were conducted to assess the role of circCNST in OS cells in vitro and in vivo. CircCNST-specific binding with miR-421 was confirmed by FISH, luciferase gene report, and RNA immunoprecipitation assays. As a result, we found that the expression levels of circCNST were dramatically increased in OS tissues and cell lines as compared with the adjacent normal tissues, and it was associated with tumor size and poor survival in OS patients. Knockdown of circCNST repressed cell viability, colony formation, and xenograft tumor growth, while restored expression of circCNST reversed these effects. Furthermore, circCNST was colocalized with miR-421 in the cytoplasm and acted as a sponge of miR-421, which attenuated circCNST-induced proliferation-promoting effects in OS cells by targeting SLC25A3. In conclusion, our findings demonstrate that circCNST promotes the tumorigenesis of OS cells by sponging miR-421, and provides a potential biomarker for patients with OS.


Author(s):  
Rui Zhang ◽  
Hao-Ming Lin ◽  
Ruth Broering ◽  
Xiang-de Shi ◽  
Xian-huan Yu ◽  
...  

AbstractDysregulation of dickkopf-related protein 1 (DKK1) expression has been reported in a variety of human cancers. We previously reported that DKK1 was upregulated in hepatocellular carcinoma (HCC). However, the role of DKK1 in HCC remains unclear. This study aimed to investigate the clinical significance and biological functions of DKK1 in HCC. The expression of DKK1 was examined in cirrhotic and HCC tissues by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). DKK1 was silenced or overexpressed in HCC cell lines, and in vitro and in vivo studies were performed. Immunohistochemistry revealed that DKK1 was weakly expressed in cirrhotic tissues (8/22, 36.4%) but upregulated in HCC tissues (48/53, 90.6%, cohort 1). Significant upregulation of DKK1 was observed in 57.6% (19/33, cohort 2) of HCC tissues by qRT-PCR, and the expression of DKK1 was associated with tumor size (P = 0.024) and tumor number (P = 0.019). Genetic depletion of DKK1 impaired the proliferation, colony-forming ability, invasion, and tumor formation of HCC cells (HepG2 and HUH-7). Conversely, forced expression of DKK1 increased the proliferation, colony-forming ability, and invasion of HepG2 and HUH-7 cells in vitro and enhanced tumor formation in vivo. Subsequent investigation revealed that the DKK1-mediated proliferation and tumorigenicity of HepG2 and HUH-7 cells is dependent on the Wnt/β-catenin signaling pathway. These findings indicate that DKK1 plays an oncogenic role in HCC by activating the Wnt/β-catenin signaling pathway.


2018 ◽  
Vol 215 (4) ◽  
pp. 735-743
Author(s):  
Kuo-Shyang Jeng ◽  
Chi-Juei Jeng ◽  
Wen-Juei Jeng ◽  
I-Shyan Sheen ◽  
Shih-Yun Li ◽  
...  

2021 ◽  
Author(s):  
Pejman Morovat ◽  
Saman Morovat ◽  
Arash M. Ashrafi ◽  
Shahram Teimourian

Abstract Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide, which has a high mortality rate and poor treatment outcomes with yet unknown molecular basis. It seems that gene expression plays a pivotal role in the pathogenesis of the disease. Circular RNAs (circRNAs) can interact with microRNAs (miRNAs) to regulate gene expression in various malignancies by acting as competitive endogenous RNAs (ceRNAs). However, the potential pathogenesis roles of the ceRNA network among circRNA/miRNA/mRNA in HCC are unclear. In this study, first, the HCC circRNA expression data were obtained from three Gene Expression Omnibus microarray datasets (GSE164803, GSE94508, GSE97332), and the differentially expressed circRNAs (DECs) were identified using R limma package. Also, the liver hepatocellular carcinoma (LIHC) miRNA and mRNA sequence data were retrieved from TCGA, and differentially expressed miRNAs (DEMIs) and mRNAs (DEGs) were determined using the R DESeq2 package. Second, CSCD website was used to uncover the binding sites of miRNAs on DECs. The DECs' potential target miRNAs were revealed by conducting an intersection between predicted miRNAs from CSCD and downregulated DEMIs. Third, some related genes were uncovered by intersecting targeted genes predicted by miRWalk and targetscan online tools with upregulated DEGs. The ceRNA network was then built using the Cytoscape software. The functional enrichment and the overall survival time of these potential targeted genes were analyzed, and a PPI network was constructed in the STRING database. Network visualization was performed by Cytoscape, and ten hub genes were detected using the CytoHubba plugin tool. Four DECs (hsa_circ_0000520, hsa_circ_0008616, hsa_circ_0070934, hsa_circ_0004315) were obtained and six miRNAs (hsa-miR-542-5p, hsa-miR-326, hsa-miR-511-5p, hsa-miR-195-5p, hsa-miR-214-3p, and hsa-miR-424-5p) which are regulated by the above DECs were identified. Then 543 overlapped genes regulated by six miRNAs mentioned above were predicted. Functional enrichment analysis showed that these genes are mostly associated with cancer regulation functions. Ten hub genes (TTK،AURKB, KIF20A، KIF23، CEP55، CDC6، DTL، NCAPG، CENPF، PLK4) have been screened from the PPI network of the 204 survival-related genes. KIF20A, NCAPG, TTK, PLK4, and CDC6 were selected for the highest significant p-values. In the end, a circRNA-miRNA-mRNA regulatory axis was established for five final selected hub genes. This study implies the potential pathogenesis of the obtained network and proposes that the two DECs (has_circ_0070934 and has_circ_0004315) may be important prognostic factor for HCC.


2021 ◽  
Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long non-coding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. We study aim to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Methods: RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, Dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC.Results: URHC silencing may inhibit the HCC cells proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggesting of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p.Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


Sign in / Sign up

Export Citation Format

Share Document