scholarly journals Decomposition of the Equations of Motion in the Analysis of Dynamics of a 3-DOF Nonideal System

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jan Awrejcewicz ◽  
Roman Starosta ◽  
Grażyna Sypniewska-Kamińska

The dynamic response of a nonlinear system with three degrees of freedom, which is excited by nonideal excitation, is investigated. In the considered system the role of a nonideal source is played by a direct current motor, where the central axis of the rotor is not coincident with the axis of rotation. This translation generates a torque whose magnitude depends on the angular velocity. During the system operation a general coordinate assigned to the nonideal source grows rapidly as a result of rotation. We propose the decomposition of the equations of motion in such a way to extract the solution which is directly related to the rotation of an unbalanced rotor. The remaining part of the solution describes pure oscillation depending on the dynamical behaviour of the whole system. The decomposed equations are solved numerically. The influence of selected system parameters on the rotor vibration is examined. The presented approach can be applied to separate vibration and rotation of motions in many other engineering systems.

Joint Rail ◽  
2004 ◽  
Author(s):  
Mohammad Durali ◽  
Mohammad Mehdi Jalili Bahabadi

In this article a train model is developed for studying train derailment in passing through bends. The model is three dimensional, nonlinear, and considers 43 degrees of freedom for each wagon. All nonlinear characteristics of suspension elements as well as flexibilities of wagon body and bogie frame, and the effect of coupler forces are included in the model. The equations of motion for the train are solved numerically for different train conditions. A neural network was constructed as an element in solution loop for determination of wheel-rail contact geometry. Derailment factor was calculated for each case. The results are presented and show the major role of coupler forces on possible train derailment.


2013 ◽  
Vol 430 ◽  
pp. 53-59 ◽  
Author(s):  
Nicolae Doru Stanescu ◽  
Dinel Popa

Our paper realizes a study of the vibrations of an engine excited by a harmonic force and sustained by four identical neo-Hookean springs of negligible masses. The considered model is one with three degrees of freedom (one translation and two rotations) and we obtain for it the equations of motion. Using these equations, we determine for the unexcited system the equilibrium positions and their stability. We also study the small oscillations about the stable equilibrium positions and we find the fundamental eigenpulsations of the system. For the case of the excited system we perform a numerical study considering the situation when the pulsation of the excitation is far away from the eigenpulsations and the situation when the pulsation of the excitation is closed to one eigenpulsation, highlighting the beat phenomenon.


1971 ◽  
Vol 93 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Desideriu Maros ◽  
Nicolae Orlandea

This paper is a further development of the kinematic problem presented in our 1967 paper [1] in which we have obtained the transmission functions for different orders of plane systems with many degrees of freedom. This paper establishes the corresponding system of differential equations of motion beginning with these functions. The purpose of this paper is to facilitate computer programming. Our study is based on the work of R. Beyer [2, 3] and is the first original addition to his papers. A second original contribution to Beyer’s theories is the deductive method of solution, from general to particular, which we have, incorporated in our work. Beyer concluded that the cases having two or three degrees of freedom can be considered as particular solutions to the results obtained.


Author(s):  
Scott B. Zagorski ◽  
Dennis A. Guenther ◽  
Gary J. Heydinger ◽  
Anmol S. Sidhu ◽  
Dale A. Andreatta

A model of a roll simulator for recreational off-highway vehicles (ROV) is presented. Models of each sub-system are described including the equations of motion, the braking, hydraulic and roll motor systems. Derivation of the equations of motion, obtained using Lagrange’s energy equation, demonstrates that they have three degrees-of-freedom (two dynamic, one static) and are coupled and highly non-linear. Results from the hydraulic sub-system illustrated that the amount of entrapped air in the system can significantly influence the response. Comparisons of the model with experimental data from the actual roll simulator showed close agreement. The greatest difference was with motor pressure. The acceleration levels and roll motions for both the model and experimental data showed excellent correlation.


1999 ◽  
Vol 122 (3) ◽  
pp. 633-638 ◽  
Author(s):  
Takahisa Kato ◽  
Souta Watanabe ◽  
Hiroshige Matsuoka

The authors present a three-degrees-of-freedom (3-DOF) model of an in-contact headslider/disk interface (HDI) system by which the dynamic characteristics of the in-contact headslider-suspension assembly can be obtained. Four regimes with respect to the interface of headslider and disk surface are shown to take the meniscus force of lubricant on the disk surface into account. The equations of motion of the in-contact headslider considering the meniscus force at each regime and the calculation results for the disk with sinusoidal undulation are described. [S0742-4787(00)01802-6]


Author(s):  
Rodrigo T. Rocha ◽  
Jose M. Balthazar ◽  
D. Dane Quinn ◽  
Angelo M. Tusset ◽  
Jorge L. P. Felix

The dynamical behaviour of a non-ideal three-degrees-of-freedom weakly coupled system associated with the quadratic nonlinearities in the equations of motion is investigated. The main system consists of two nonlinear mechanical oscillators coupling with quadratic nonlinearities and in which possess a 2:1 internal resonance between their translational movements. Under these conditions, we analyzed the response when a DC unbalanced motor with limited power supply (non-ideal system) excites the main system. When the excitation frequency is near to second natural frequency of the main system, saturation and jump phenomena are presented. Then, this work will analyze some torques of the motor, which causes the phenomena, and due to high amplitudes of motion will be possible to look for a way to harvest energy in a future work.


2019 ◽  
Vol 13 (4) ◽  
pp. 226-232
Author(s):  
Arkadiusz Trąbka

Abstract Forging hammers are machines whose operation causes negative effects both at the place of their foundation (the soil settlement) and in their surroundings (e.g., vibrations propagating to the other devices, noise, etc.). Knowledge of the parameters characterizing the time history of the force that arises as a result of impact of a ram on a shaped material is of fundamental importance for the correct analysis of both the structure of the hammer and its impact on the surroundings. In the paper, the effect of the shape and duration of a pulse load on the dynamic response of a hammer-foundation forging system was assessed. An analytical method of description of the forces that arise as a result of impact of the ram on the forged material, using different forms of pulses was presented. The forces defined in this way as loads in a mathematical model of three degrees of freedom forging system were used. The equations of motion derived from d’Alembert’s principle were solved numerically in the Matlab program. The analyses for eight forms of the pulse loads with the same pulse sizes but different durations were performed. The results in the graphs were presented. It was found, among other things, that a greater impact on the maximum displacement, velocity and acceleration of each component of the hammer-foundation system as well as on the maximum forces transmitted to the soil has the duration of a pulse than its shape.


Aviation ◽  
2005 ◽  
Vol 9 (2) ◽  
pp. 10-16 ◽  
Author(s):  
Rafał Chatys ◽  
Zbigniew Koruba

This work discusses the use of a mini gyroscope with three degrees of freedom to control or remote control an unmanned aerial mini‐vehicle (mini‐UAV). The gyroscope determines the reference system for the navigation of the UAV. The algorithm of the gyroscope control moments and the law of deflection of the UAV surface control are presented. The mini autopilot plays a role of a system that makes the longitudinal line coincide with the gyroscope axis. The structure and durability aspects of the remote and programmed navigation are considered.


2018 ◽  
Vol 10 (5) ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Ramon Rodriguez-Castro

In this work, a new parallel manipulator with multiple operation modes is introduced. The proposed robot is based on a three-degrees-of-freedom (3DOF) parallel manipulator endowed with a three-dof central kinematic chain, where by blocking some specific kinematic pairs, the robot can modify its mobility. Hence, the robot manipulator is able to assume the role of a limited-dof or a nonredundant parallel manipulator. Without loss of generality, the instantaneous kinematics of one member of the family of parallel manipulators generated by the reconfigurable parallel manipulator, the three-RPRRC + RRPRU nonredundant parallel manipulator with decoupled motions, is approached by means of the theory of screws. For the sake of completeness, the finite kinematics of the robot is also investigated. Numerical examples are included with the purpose to clarify the method of kinematic analysis.


Robotica ◽  
2004 ◽  
Vol 22 (5) ◽  
pp. 479-491 ◽  
Author(s):  
J.-H. Bae ◽  
S. Arimoto

The purpose of this paper is in duplicate to present computer simulation results of concurrent grasp and object manipulation by a pair of three degrees of freedom (3-dof) robot fingers with rigid hemispherical finger-ends that induce rolling contacts with an object and propose a guidance of gain tuning. Although the existence of a class of sensory feedback signals that realize stable grasp and orientation control of the object concurrently has been shown theoretically, the problem of tuning of their feedback gains has not yet been solved. This paper proposes a guideline for tuning sensory feedback gains by deriving a relationship between the object mass and damping coefficients of finger motions through analyzing the overall fingers-object dynamics and taking into account the well-known force/velocity characteristics of human muscle in muscle physiology.


Sign in / Sign up

Export Citation Format

Share Document