scholarly journals Recent Developments in Topical Wound Therapy: Impact of Antimicrobiological Changes and Rebalancing the Wound Milieu

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Cornelia Erfurt-Berge ◽  
Regina Renner

Wound therapy improves every year by developing new wound treatment options or by advancing already existing wound materials, for example, adding self-releasing analgesic drugs or growth factors to wound dressings, or by binding and inactivating excessive proteases. Also new dressing materials based on silk fibers and enhanced methods to reduce bacterial burden, for example, cold argon plasma, might help to fasten wound healing.

Author(s):  
Elizabeth Gianino ◽  
Craig Miller ◽  
Jordon Gilmore

Given their severity and non-healing nature, diabetic chronic wounds are a significant concern to the 30.3 million Americans diagnosed with diabetes mellitus (2015). Peripheral arterial diseases, neuropathy, and infection contribute to the development of these wounds, which lead to an increased incidence of lower extremity amputations. Early recognition, debridement, offloading, and controlling infection are imperative for timely treatment. However, wound characterization and treatment are highly subjective and based largely on the experience of the treating clinician. Many wound dressings have been designed to address particular clinical presentations, but a prescriptive method is lacking for identifying the particular state of chronic, non-healing wounds. The authors suggest that recent developments in wound dressings and biosensing may allow for the quantitative, real-time representation of the wound environment, including exudate levels, pathogen concentrations, and tissue regeneration. Development of such sensing capability could enable more strategic, personalized care at the onset of ulceration and limit the infection leading to amputation. This review presents an overview of the pathophysiology of diabetic chronic wounds, a brief summary of biomaterial wound dressing treatment options, and biosensor development for biomarker sensing in the wound environment.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1681
Author(s):  
José Debes ◽  
Pablo Romagnoli ◽  
Jhon Prieto ◽  
Marco Arrese ◽  
Angelo Mattos ◽  
...  

Hepatocellular carcinoma (HCC) is a leading cause of global cancer death. Major etiologies of HCC relate to chronic viral infections as well as metabolic conditions. The survival rate of people with HCC is very low and has been attributed to late diagnosis with limited treatment options. Combining ultrasound and the biomarker alpha-fetoprotein (AFP) is currently one of the most widely used screening combinations for HCC. However, the clinical utility of AFP is controversial, and the frequency and operator-dependence of ultrasound lead to a variable degree of sensitivity and specificity across the globe. In this review, we summarize recent developments in the search for non-invasive serum biomarkers for early detection of HCC to improve prognosis and outcome for patients. We focus on tumor-associated protein markers, immune mediators (cytokines and chemokines), and micro-RNAs in serum or circulating extracellular vesicles and examine their potential for clinical application.


Author(s):  
Johanna C. Wagner ◽  
Anja Wetz ◽  
Armin Wiegering ◽  
Johan F. Lock ◽  
Stefan Löb ◽  
...  

Abstract Purpose Traditionally, previous wound infection was considered a contraindication to secondary skin closure; however, several case reports describe successful secondary wound closure of wounds “preconditioned” with negative pressure wound therapy (NPWT). Although this has been increasingly applied in daily practice, a systematic analysis of its feasibility has not been published thus far. The aim of this study was to evaluate secondary skin closure in previously infected abdominal wounds following treatment with NPWT. Methods Single-center retrospective analysis of patients with infected abdominal wounds treated with NPWT followed by either secondary skin closure referenced to a group receiving open wound therapy. Endpoints were wound closure rate, wound complications (such as recurrent infection or hernia), and perioperative data (such as duration of NPWT or hospitalization parameters). Results One hundred ninety-eight patients during 2013–2016 received a secondary skin closure after NPWT and were analyzed and referenced to 67 patients in the same period with open wound treatment after NPWT. No significant difference in BMI, chronic immunosuppressive medication, or tobacco use was found between both groups. The mean duration of hospital stay was 30 days with a comparable duration in both patient groups (29 versus 33 days, p = 0.35). Interestingly, only 7.7% of patients after secondary skin closure developed recurrent surgical site infection and in over 80% of patients were discharged with closed wounds requiring only minimal outpatient wound care. Conclusion Surgical skin closure following NPWT of infected abdominal wounds is a good and safe alternative to open wound treatment. It prevents lengthy outpatient wound therapy and is expected to result in a higher quality of life for patients and reduce health care costs.


2021 ◽  
Author(s):  
Katerina Menclová ◽  
Petr Svoboda ◽  
Jan Hadač ◽  
Štefan Juhás ◽  
Jana Juhásová ◽  
...  

ABSTRACT Background Nanofiber wound dressings remain the domain of in vitro studies. The purpose of our study was to verify the benefits of chitosan (CTS) and polylactide (PLA)-based nanofiber wound dressings on a porcine model of a naturally contaminated standardized wound and compare them with the conventional dressings, i.e., gauze and Inadine. Material and Methods The study group included 32 pigs randomized into four homogeneous groups according to the wound dressing type. Standardized wounds were created on their backs, and wound dressings were regularly changed. We evaluated difficulty of handling individual dressing materials and macroscopic appearance of the wounds. Wound swabs were taken for bacteriological examination. Blood samples were obtained to determine blood count values and serum levels of acute phase proteins (serum amyloid A, C-reactive protein, and haptoglobin). The crucial point of the study was histological analysis. Microscopic evaluation was focused on the defect depth and tissue reactions, including formation of the fibrin exudate with neutrophil granulocytes, the layer of granulation and cellular connective tissue, and the reepithelialization. Statistical analysis was performed by using SPSS software. The analysis was based on the Kruskal–Wallis H test and Mann–Whitney U test followed by Bonferroni correction. Significance was set at P < .05. Results Macroscopic examination did not show any difference in wound healing among the groups. However, evaluation of histological findings demonstrated that PLA-based nanofiber dressing accelerated the proliferative (P = .025) and reepithelialization (P < .001) healing phases, while chitosan-based nanofiber dressing potentiated and accelerated the inflammatory phase (P = .006). No statistically significant changes were observed in the blood count or acute inflammatory phase proteins during the trial. Different dynamics were noted in serum amyloid A values in the group treated with PLA-based nanofiber dressing (P = .006). Conclusion Based on the microscopic examination, we have documented a positive effect of nanofiber wound dressings on acceleration of individual phases of the healing process. Nanofiber wound dressings have a potential to become in future part of the common wound care practice.


2021 ◽  
Vol 13 (585) ◽  
pp. eabe4839
Author(s):  
Simon Matoori ◽  
Aristidis Veves ◽  
David J. Mooney

Current treatment options for foot ulcers, a serious and prevalent complication of diabetes, remain nonspecific. In this Perspective, we present recent advances in understanding the pathophysiology of diabetic wound healing and the emergence of previously unidentified targets. We discuss wound dressings tailored to the diabetic wound environment currently under development.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Sazlyna Mohd Sazlly Lim ◽  
Aaron J. Heffernan ◽  
Jason A. Roberts ◽  
Fekade B. Sime

ABSTRACT Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates. Synergism of FOS/SUL against 50 clinical CR-AB isolates was screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill, and 2-log kill after 24 h of combination therapy. The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased 4- to 8-fold, compared to the monotherapy MIC50 and MIC90. In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro. Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam at 4 g every 8 h demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69 to 76%, compared to ∼15 to 30% with monotherapy regimens at the highest doses. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.


2011 ◽  
Vol 30 (2-3) ◽  
pp. 77-87 ◽  
Author(s):  
Ulrike Schmidt ◽  
Florian Holsboer ◽  
Theo Rein

Development of psychiatric diseases such as posttraumatic stress disorder (PTSD) invokes, as with most complex diseases, both genetic and environmental factors. The era of genome-wide high throughput technologies has sparked the initiation of genotype screenings in large cohorts of diseased and control individuals, but had limited success in identification of disease causing genetic variants. It has become evident that these efforts at the genomic level need to be complemented with endeavours in elucidating the proteome, transcriptome and epigenetic profiles. Epigenetics is attractive in particular because there is accumulating evidence that the lasting impact of adverse life events is reflected in certain covalent modifications of the chromatin.In this review, we outline the characteristics of PTSD as a stress-related disease and survey recent developments revealing epigenetic aspects of stress-related disorders in general. There is also increasing direct evidence for gene programming and epigenetic components in PTSD. Finally, we discuss treatment options in the light of recent discoveries of epigenetic mechanisms of psychotropic drugs.


Temporary dressings are used to cover the wound from the time of first aid through to definitive soft tissue closure. Frequent dressing changes should be avoided to reduce contamination by nosocomial organisms. Therefore, the initial dressing should be simple to apply and maintain tissue viability by preventing desiccation, e.g. gauze soaked in normal saline and covered with an occlusive film as per the National Institute for Health and Care Excellence guidance. Following wound excision, a simple non-adherent dressing can be used. Negative pressure wound therapy should not be used to downgrade the requirement for definitive soft tissue reconstruction, which should be achieved within 72 hours of injury. Following internal fixation, definitive soft tissue reconstruction should be performed at the same time.


2020 ◽  
Vol 8 (7) ◽  
pp. 481 ◽  
Author(s):  
Tatyana A. Kuznetsova ◽  
Boris G. Andryukov ◽  
Natalia N. Besednova ◽  
Tatyana S. Zaporozhets ◽  
Andrey V. Kalinin

The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document