scholarly journals Effect of Thermophysical Properties on Coupled Heat and Mass Transfer in Porous Material during Forced Convective Drying

2014 ◽  
Vol 6 ◽  
pp. 830387 ◽  
Author(s):  
Wei Cai ◽  
Lexian Zhu ◽  
Shilin Dong ◽  
Guozhen Xie ◽  
Junming Li

The convective drying kinetics of porous medium was investigated numerically. A mathematical model for forced convective drying was established to estimate the evolution of moisture content and temperature inside multilayered porous medium. The set of coupled partial differential equations with the specified boundary and initial conditions were solved numerically using a MATLAB code. An experimental setup of convective drying had been constructed and validated the theoretical model. The temperature and moisture content of the potato samples were dynamically measured and recorded during the drying process. Results indicate that thermal diffusion coefficient has significant positive impact on temperature distribution and mass diffusion coefficient might directly affect the moisture content distribution. Soret effect has a significant impact on heat flux and temperature distribution in the presence of large temperature gradient.

2021 ◽  
Vol 9 (16) ◽  
pp. 212-220
Author(s):  
Liubomyr Khomichak ◽  
◽  
Inha Kuznietsova ◽  
Svetlana Vysotska ◽  
Sergiy Tkachenko ◽  
...  

Introduction. Processing of grain raw material with influence on starch or albumens by application of heat treatment creates the variety of functional properties of a product and is perspective in the modern terms vital functions of man. Research methods and methods. The flour obtained from wheat of the Ascanian wheat and from wheat of the soft varieties: Sophia ("sweet wheat"), Blond (soft) and Chornobrova (enriched with micro- and macronutrients) were used in the study. Thermal modification of flour samples was carried out in a convective manner. The control sample for determining the quality indicators is obtained in industrial conditions, extruded wheat flour produced by LLC "AS groups, LTD". Research results. The obtained kinetic dependence shows the gradual loss of moisture standards with different speed which accordingly influences on duration of drying. The moisture content of the drying agent most affects the intensity at the initial stage of the constant drying rate. With an increase in the moisture content of the coolant, the period of constant drying increases and the amount of evaporated moisture increases during this period. With the subsequent removal of moisture from raw materials, the degree of influence of this parameter on the intensity decreases. The nature of the drying curves is the same and the recommended process for obtaining modified flour is the process duration of 300 minutes or 5 hours. It was determined microscopically, that the samples of dried wheat flour have a purpose and are partially destroyed by starch granules and amorphization of biocomposite materials. Based on the data on the kinetics of drying flour samples, the kinetic coefficients and values of the critical moisture content for drying wheat flour were calculated, which is 1.18-1.30 %. It was determined that for the sensorial indicators the obtained samples have indicators characteristic of the varietal characteristics of wheat, from which the flour was taken. In terms of physical and chemical parameters, the modified wheat flour samples are not inferior to the well-known industrial sample of extruded flour. Conclusions. Use of flour, obtained from the wheat with different correlation of amilose and amylopectin, positively influences on a technological process and allows to extend the assortment of modified starch products, and accordingly, food products. Kinetics of the convective drying standards of the flour is investigated. Researches showed that a it is physically modified flour obtained from the different sorts of the soft wheat is not inferior in quality to the extruded wheat flour.


2019 ◽  
Vol 11 (5) ◽  
pp. 250 ◽  
Author(s):  
Wellytton Darci Quequeto ◽  
Osvaldo Resende ◽  
Patrícia Cardoso Silva ◽  
Fábio Adriano Santos e Silva ◽  
Lígia Campos de Moura Silva

Noni seeds have been used for years as an important medicinal source, with wide use in the pharmaceutical and food industry. Drying is a fundamental process in the post-harvest stages, where it enables the safe storage of the product. Therefore, the present study aimed to fit different mathematical models to experimental data of drying kinetics of noni seeds, determine the effective diffusion coefficient and obtain the activation energy for the process during drying under different conditions of air temperature. The experiment used noni seeds with initial moisture content of 0.46 (decimal, d.b.) and dehydrated up to equilibrium moisture content. Drying was conducted under different controlled conditions of temperature, 40; 50; 60; 70 and 80 ºC and relative humidity, 24.4; 16.0; 9.9; 5.7 and 3.3%, respectively. Eleven mathematical models were fitted to the experimental data. The parameters to evaluate the fitting of the mathematical models were mean relative error (P), mean estimated error (SE), coefficient of determination (R2), Chi-square test (c2), Akaike Information Criterion (AIC) and Schwarz’s Bayesian Information Criterion (BIC). Considering the fitting criteria, the model Two Terms was selected to describe the drying kinetics of noni seeds. Effective diffusion coefficient ranged from 8.70 to 23.71 × 10-10 m2 s-1 and its relationship with drying temperature can be described by the Arrhenius equation. The activation energy for noni seeds drying was 24.20 kJ mol-1 for the studied temperature range.


2013 ◽  
Vol 9 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Juliana M. Silva ◽  
Muriel G. Cantu ◽  
Vera Rodrigues ◽  
Marcio A. Mazutti

AbstractThis work evaluated the effects of osmotic dehydration on convective drying kinetics of figs. It used the experimental design methodology to evaluate the influence of sucrose concentration, temperature and time on the amount of total soluble solids (TSS) and moisture content of the figs. After the osmotic dehydration, it evaluated the convective drying kinetics at temperatures from 55 to 75°C. A mathematical model was employed to fit the experimental data. From the experimental data of the osmotic dehydration, it was seen that the moisture content of the figs after the treatment was closely related to the amount of TSS of the figs. Low moisture content and high TSS content were obtained for a narrow range of independent variables comprised between 55–60°C, 55–63 wt% and 260–280 min for temperature, sucrose concentration and exposure time, respectively. In the convective drying kinetics of the figs, there were no verified significant differences in the final time of drying of non-treated and osmotically dehydrated figs. However, the shrinkage was considerably reduced in the osmotically treated figs. The use of osmotic treatment enables the obtainment of figs softer than the simple use of convective drying without changing the final time of drying.


Author(s):  
Eoin Fanning ◽  
Tim Persoons ◽  
Darina B. Murray

The evolution of the mass transfer rate and temperature of a porous body in a convective drying process shows two main stages: A constant-drying rate period and a falling-drying rate period. This study investigates the simultaneous time evolution of moisture content and local surface temperature of a porous cube inside a rectangular flow channel for a range of air flow temperatures and Reynolds numbers. The moisture content is measured using a precision mass balance. Local surface temperature distribution is measured using a thermal imaging camera. In the constant-drying rate period, an average Nusselt number in the range 7.1 ≤ Nu ≤ 13.3 and an average Sherwood number of 4.7 ≤ Sh ≤ 6.0 are calculated for a Reynolds number range of 180 ≤ Re ≤ 595. Infrared thermography shows that the falling-drying rate period begins, the temperature distribution becomes non-uniform and approaches the temperature of the surroundings. This transition occurs first near the edges of the cube and, in particular, near the leading edge of the cube, as witnessed in previous studies.


2008 ◽  
Vol 273-276 ◽  
pp. 758-763
Author(s):  
Ramón Moreira ◽  
Francisco Chenlo ◽  
L. Chaguri ◽  
Christiana Fernandes

Many food materials must be dried in order to decrease its water activity and to increase the shelf-life. Also, rehydration operation must be carried out as previous step before consumption. Both operations are commonly employed in some industrial chestnut processing. These processes can be carried out at different temperatures and in all cases the quality of the final product can be affected. In this work, convective drying with hot air is the employed method for water removal and rehydration is carried out by immersion of chestnut in water. In both cases, mass transfer processes are governed by water diffusion in the bulk of the solid. The aim of this work is to determine experimentally the drying and rehydration kinetics of chestnut samples at different conditions of temperature and moisture content. Obtained data are modeled with a diffusional model taking into account volume variations and the corresponding values of the coefficients of diffusion of water are obtained. Analysis of the results indicates that drying/rehydration rates increase with temperature and rehydration kinetics are also depending on the initial moisture content of chestnut. Finally, leaching flow during rehydration is only important at high temperature due to starch gelatinization processes.


Author(s):  
Thaís A. de S. Smaniotto ◽  
Osvaldo Resende ◽  
Kelly A. de Sousa ◽  
Daniel E. C. de Oliveira ◽  
Rafael C. Campos

ABSTRACT The objectives of this study were to fit different mathematical models to experimental data of drying of sunflower grains, determine and evaluate the effective diffusion coefficient and obtain the activation energy for the process during the drying under various conditions of air. The sunflower grains were collected with an initial moisture content of 0.5267 dry basis (d.b.) and dried in an oven with forced air ventilation under five temperature conditions: 35, 50, 65, 80 and 95 °C, until reaching the moisture content of 0.0934 ± 0.0061 (d.b.). Among the analyzed models, Wang and Singh showed the best fit to describe the drying phenomenon. The effective diffusion coefficient of sunflower grains increased with the increment in air temperature and has activation energy for liquid diffusion in the sunflower drying of 29.55 kJ mol-1.


Author(s):  
Marina Sergeevna Maklusova ◽  
Maria Konstantinovna Kosheleva ◽  
Olga Roaldovna Dornyak

The object of research is a fiber-forming polymer - polycaproamide. The process of drying of polycaproamide granules, after aqueous extraction of low-molecular compounds from them, is an important stage of producing of polyamide fiber nylon and largely determines the quality of the target product. To obtain a high-quality fiber, the drying of the granules should provide a sufficiently high degree of its dehydration. The average final moisture content of the material should be no more than 0.1%. With a low moisture content, the drying process slows down, so the calculation of the kinetics of dewatering of granules can not be carried out using a constant effective mass-transfer coefficient (moisture diffusion). In this paper we present a calculation technique for determining two local parameters of mass transfer: the water diffusion coefficient in polycaproamide (as a liquid) and the so-called criterion for phase transitions, which depend on the moisture content of the material and are determined by its sorption properties. The report presents the results of numerical calculations illustrating the development of two-dimensional fields of moisture content, temperature, pressure and vapor concentration in the vapor-gas phase for cylindrical granules in convective drying. To describe the processes of heat and mass transfer during the drying of granules, a nonstationary nonlinear 2D model is used that includes transport equations averaged over the microvolume of the material: the liquid phase transfer equation; heat equation; equation for vapor-gas phase pressure; equation for the concentration of the vapor component. The nonstationary nonlinear conjugate mathematical model is studied numerically. A feature of the presented model is the possibility of an analytical calculation of the local mass transfer coefficients of a liquid, taking into account the sorption properties of the material, the permeability coefficient and the local values ​​of humidity and temperature. Determination of the local coefficients of moisture transfer is carried out on the basis of the formulas obtained in the analysis of a more general mathematical model of heat and mass transfer carried out based on the mechanics of multiphase systems developed in the works of R.I. Nigmatulin, and S. Whitaker. The structure of the samples was investigated by three independent methods in order to obtain the most complete idea of ​​it and to compare the obtained characteristics. The isotherms of the sorption of polycaproamide were obtained experimentally on a vacuum sorption plant with Mac-Ben-Bakr weights. Comparison of the results of mathematical modeling of heat and mass transfer in the granule and data of the laboratory experiment on the kinetics of polycaproamide granule drying showed good agreement between the calculated and experimental data. The constructed mathematical model allows to form energy-efficient resource-saving regimes for drying granules of polycaproamide.Keywords: convective drying, mathematical modeling, polycaproamide.


2017 ◽  
Vol 12 (3) ◽  
pp. 400 ◽  
Author(s):  
Valdiney Cambuy Siqueira ◽  
Flávio Meira Borém ◽  
Guilherme Euripedes Alves ◽  
Eder Pedroza Isquierdo ◽  
Afonso Celso Ferreira Pinto ◽  
...  

Objetivou-se, com o presente trabalho, propor um novo método de processamento e secagem, assim como avaliar o comportamento dos grãos submetidos a este processo, por meio da taxa de redução de água e do ajuste de diferentes modelos matemáticos aos dados experimentais da secagem. Os frutos colhidos no estágio maduro foram divididos em três lotes. O primeiro foi seco continuamente à temperatura de 40±1 °C. O segundo consiste na secagem do café natural até os teores de água de 0,56±0,02, 0,41±0,02, 0,28±0,02 e 0,20±0,02 decimal (base seca, b.s.), seguido de beneficiamento e secagem contínua nas temperaturas de 35±1 ºC e 40±1 ºC. O terceiro lote correspondeu à secagem contínua do café descascado e desmucilado na temperatura de 40±1 °C. Em todos os lotes, a secagem foi encerrada quando os grãos atingiram o teor de água de 0,12±0,05 (b.s.). Aos dados experimentais da secagem foram ajustados dez modelos matemáticos utilizados para representação da secagem dos produtos agrícolas. Além da representação da cinética de secagem foi avaliada a taxa de redução de água dos grãos. Conclui-se que a taxa de redução de água é maior para a temperatura de secagem de 40±1 °C, especialmente para maiores teores de água. O tempo total de secagem do café beneficiado com alto teor de água é expressivamente reduzido, quando comparado ao tempo de secagem completa do café natural. O modelo de Midilli descreve satisfatoriamente a cinética de secagem do café beneficiado.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Gui-chen Li ◽  
Chong-chong Qi ◽  
Yuan-tian Sun ◽  
Xiao-lin Tang ◽  
Bao-quan Hou

The kinetics of fluid-solid coupling during immersion is an important topic of investigation in rock engineering. Two rock types, sandstone and mudstone, are selected in this work to study the correlation between the softening characteristics of the rocks and moisture content. This is achieved through detailed studies using scanning electron microscopy, shear tests, and evaluation of rock index properties during exposure to different moisture contents. An underground roadway excavation is simulated by dynamic finite element modeling to analyze the effect of moisture content on the stability of the roadway. The results show that moisture content has a significant effect on shear properties reduction of both sandstone and mudstone, which must thus be considered in mining or excavation processes. Specifically, it is found that the number, area, and diameter of micropores, as well as surface porosity, increase with increasing moisture content. Additionally, stress concentration is negatively correlated with moisture content, while the influenced area and vertical displacement are positively correlated with moisture content. These findings may provide useful input for the design of underground roadways.


Sign in / Sign up

Export Citation Format

Share Document