scholarly journals Rice Breeding for High Grain Yield under Drought: A Strategic Solution to a Complex Problem

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Shalabh Dixit ◽  
Anshuman Singh ◽  
Arvind Kumar

Drought is one of the major abiotic stresses that affect rice production in rainfed areas. Recent trends in climate change have predicted a further increase in drought intensity, making the development of new drought-tolerant rice cultivars critical to sustain rice production in this ecosystem. The use of grain yield as a selection criterion at the International Rice Research Institute (IRRI), through proper population development and precise phenotyping techniques, has allowed the development of several high-yielding rice cultivars that have been released in major rainfed rice-growing areas. This strategy has also allowed the identification of several major quantitative trait loci (QTLs) that show large effects under drought across environments and genetic backgrounds. These QTLs are being pyramided together to develop drought-tolerant versions of popular drought-susceptible varieties. The near-isogenic lines (NILs) developed can replace the popular, high-yielding but drought-susceptible varieties in rainfed areas prone to drought. Additionally, these NILs serve as suitable genetic material for the study of molecular and physiological mechanisms underlying these QTLs. This may provide a better understanding of plant functions responsible for high grain yield under drought and lead to the identification of new traits and genes.

Author(s):  
D. B. Karki ◽  
L. P. Amgain

 A field experiment entitled “growth, phenology and yield of drought tolerant rainfed rice cultivars to staggered transplanting dates under changing climatic scenarios of central terai, Nepal” was conducted at farmer’s field in Dhobadi VDC, Nawalparasi (27°40'N, 84°05'E and 235 masl) during June to November, 2012. The experimental soil was determined silt loam with slightly acidic reaction (pH-5.67). About 1960.40 mm of total rainfall was recorded at the experimental site during crop growing period which was 17.56% lower than average of the past 15 years (2378 mm). The experiment consisted sixteen treatment combinations arranged in split-plot design i.e. four transplanting dates in main-plot and four cultivars in sub-plot with three replications. The statistical result on grain yield revealed significant differences among dates of transplanting, however, varietal differences were found to be non-significant. The maximum (2.46 t ha-1) and minimum (0.30 t ha-1) grain yield were recorded for first transplanting date (July 15) and last transplanting date (August 14), respectively. Grain yield, number of grains panicle-1, filled grains panicle-1 and test weight recorded under July 15, July 25 and August 4 transplanted condition were statistically at par but was significantly superior over August 14 transplanting. The reduction in grain yield due to successive delay of 10 days from July 15 upto August 4 was to the extent of 12.6 and 28.6 percent, respectively. GDD received by rice cultivars was found significantly higher (2830 °C) for July 15 transplanted rice at maturity stage, whereas, August 14 transplanted rice received significantly lower GDD (2689 °C) for maintaining maturity stage. Cultivar Sukkha Dhan-2 was found relatively more stable in using heat for all transplanting dates (86.31%) followed by Sukkha Dhan-3 (86.66 %), Sukkha Dhan-1 (88.31%) and Radha-4 (88.37 %). Journal of the Institute of Agriculture and Animal Science.Vol. 33-34, 2015, page: 157-164


2019 ◽  
Vol 56 (2) ◽  
pp. 218-226
Author(s):  
Jiana Chen ◽  
Min Huang ◽  
Fangbo Cao ◽  
Xiaohong Yin ◽  
Yingbin Zou

AbstractHigh-yielding short-duration cultivars are required due to the development of mechanized large-scale double-season rice (i.e. early- and late-season rice) production in China. The objective of this study was to identify whether existing early-season rice cultivars can be used as resources to select high-yielding, short-duration (less than 115 days) cultivars of machine-transplanted late-season rice. Field experiments were conducted in Yongan, Hunan Province, China in the early and late rice-growing seasons in 2015 and 2016. Eight early-season rice cultivars (Liangyou 6, Lingliangyou 211, Lingliangyou 268, Xiangzaoxian 32, Xiangzaoxian 42, Zhongjiazao 17, Zhongzao 39, and Zhuliangyou 819) with growth durations of less than 115 days were used in 2015, and four cultivars (Lingliangyou 268, Zhongjiazao 17, Zhongzao 39, and Zhuliangyou 819) with good yield performance in the late season in 2015 were grown in 2016. All cultivars had a growth duration of less than 110 days when grown in the late season in both years. Zhongjiazao 17 produced the maximum grain yield of 9.61 Mg ha−1 with a daily grain yield of 108 kg ha−1 d−1 in the late season in 2015. Averaged across both years, Lingliangyou 268 had the highest grain yield of 8.57 Mg ha−1 with a daily grain yield of 95 kg ha−1 d−1 in the late season. The good yield performance of the early-season rice cultivars grown in the late season was mainly attributable to higher apparent radiation use efficiency. Growth duration and grain yield of early-season rice cultivars grown in the late season were not significantly related to those grown in the early season. Our study suggests that it is feasible to select high-yielding short-duration cultivars from existing early-season rice cultivars for machine-transplanted late-season rice production. Special tests by growing alternative early-season rice cultivars in the late season should be done to determine their growth duration and grain yield for such selection.


2019 ◽  
Vol 6 (2) ◽  
pp. 200-210
Author(s):  
Muhammad Syahril ◽  
Syamsul Bahri ◽  
Rhido Suhada

Efforts for increasing rice production nationally, it is necessary to increase the productivity of a land. Utilization of marginal lands like drought land potential to increase rice production nationally. One effort to utilize marginal land like dry land is the use of high-yielding drought tolerant varieties. Until now high-yielding drought tolerant varieties still relatively rare. For this reason, it is necessary to create high-yielding drought tolerant varieties from plant breeding program. One of the standard programs in plant breeding to create high-yielding drought tolerant varieties is provision of genetic material as parental. Local varieties gogo rice Drought-tolerant potential to be used as parental in the plant breeding program to create of high-yielding drought tolerant rice varieties. For this reason, it is necessary to test drought tolerance of local rice cultivars. The study used 10 cultivars exploration results in East Aceh Regency namely Gameso, Sibengkok, Ramos Gunung, Sidol, Sigedul, Rias Kuning, Rias putih, Sibontok, Serumu, and Sileso. Drought tolerance testing using PEG solution (Polyethylene Glycol) 6000 156. 75 g / liter of H2O which is equivalent to the osmotic potential of -3 BAR and aquades as control (0 BAR) an germination stage and early vegetative stage. The results of the study show that 10 cultivars tested in the germination stage, 6 cultivars were selected as drought tolerant cultivars. Furthermore, 6 cultivars tested in the early vegetative stage showed the ability to recover at day 35 and then at day 42 showed no symptoms of drought. 6 drought tolerant cultivars are Gameso, Ramos Gunung, Sigedul, Rias Kuning, Sibontok, and Sileso.


2016 ◽  
Vol 8 (11) ◽  
pp. 38 ◽  
Author(s):  
Yongjian Sun ◽  
Yuanyuan Sun ◽  
Hui Xu ◽  
Chunyu Wang ◽  
Zhiyuan Yang ◽  
...  

<p>The fertilizer management and the selection of rice cultivars play a vital role in rice production to maximize yield and minimize fertilizer cost. Many researches have elucidated the combined increase of nitrogen (N) accumulation and N use efficiency (NUE) in different rice genotypes, however, the accumulation, translocation, distribution of phosphorus (P) and potassium (K), and the correlation of N, P and K absorption characteristics and their relationships with grain yield in rice cultivars with different NUE is still obscure. For this purpose, two rice cultivars differing in NUE were chosen for this study, one with high-NUE (Dexiang 4103) and the other with low-NUE (Yixiang 3724). Fertilizers were applied at three levels, including low (75 kg N·hm<sup>-2</sup>, 37.5 kg P<sub>2</sub>O<sub>5</sub>·hm<sup>-2</sup>, 75 kg K<sub>2</sub>O·hm<sup>-2</sup>), medium (150 kg N·hm<sup>-2</sup>, 75 kg P<sub>2</sub>O<sub>5</sub>·hm<sup>-2</sup>, 150 kg K<sub>2</sub>O·hm<sup>-2</sup>), high rate (225 kg N·hm<sup>-2</sup>, 112.5 kg P<sub>2</sub>O<sub>5</sub>·hm<sup>-2</sup>, 225 kg K<sub>2</sub>O·hm<sup>-2</sup>). A no-N treatment was included for each level as the control. The results showed that there were obvious interacting effects of cultivars and fertilizer levels on grain yield, as well as the absorption and translocation of P and K. Rice cultivars exhibited markedly stronger effects on total spikelets and the translocation of P and K in leaves, compared to fertilizer levels. The opposite trend was observed for grain yield, P and K accumulation at the main growth stages, and P and K translocation in stem and leaf sheaths. Compared with other treatments, the combined application of NPK fertilizers at medium level promoted nutrient accumulation, increased the nutrient harvest index, facilitated nutrient translocation in vegetative organs, and ultimately improved grain yield in both cultivars. The equilibrium relationship between N, P and K accumulation and grain yield indicated that the grain yield associated with high-NUE cultivar could reach more than 10,000 kg hm<sup>-2</sup>, with N, P, and K requirements of 180.8-213.3, 47.3-54.7, and 223.5-259.1 kg hm<sup>-2</sup>, respectively. Additionally, the correlation analysis revealed that accumulation and translocation of P, K during different growth stages was significantly (P &lt; 0.05) related to grain yield and nutrient accumulation in different NUE cultivars. This study suggested that varieties with high-NUE also has high P and K use efficiencies, indicating that the conventional screening of varieties with high P or K use efficiencies can be included in the selection of high-NUE varieties. The increase of P and K accumulation and translocation during the period from heading to maturity was helpful to maintain a high-yield and NUE in rice production.</p>


2020 ◽  
Vol 25 (2) ◽  
pp. 53
Author(s):  
Ali Pramono ◽  
Terry Ayu Adriany ◽  
Helena Lina Susilawati

Rice production is a significant anthropogenic source of methane (CH4) and nitrous oxide (N2O), two important greenhouse gases (GHGs). Several strategies for reducing GHGs emissions from paddy fields are water management and the use of low emission rice cultivars. The purpose of this study was to determine the effects of water management and rice cultivars on the grain yield and greenhouse gas (GHG) emissions. The research was conducted at the Indonesian Agricultural Environment Research Institute (IAERI), Pati District, Central Java Province during the dry season 2017 (March-June 2017). The study used a factorial randomized block design with the first factor were water managements: A1 = continuous flooding at 5 cm height and A2 = alternate wetting and drying/AWD), and the second factor were rice cultivars: V1 = Ciherang, V2 = Inpari 32, V3 = Mekongga with three replications. All treatments received an equal amount of farmyard manure and inorganic fertilizers. GHG measurements were done by using a closed chamber method. The results of this study indicated that the combination of AWD treatment with Ciherang, Inpari 32, and Mekongga rice cultivars significantly reduced CH4 emissions by 23%, 46%, and 6%, respectively. The Inpari 32 rice variety produced the highest grain yield compared to others, but there were no significant differences in grain yield between all of the treatments. Therefore, AWD technique in combination with Inpari 32 rice cultivar could be a potential option for maintaining the yield-scaled global warming potential of rice production at a lower level, without reducing grain yield.


Jurnal BiBieT ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 9
Author(s):  
Dewi Rezki

<p align="center"><strong>ABSTRAK</strong></p><p align="center"><strong> </strong></p><p>Tingginya laju pertumbuhan penduduk dan alih fungsi lahan pertanian, menyebabkan perlunya dilakukan upaya untuk meningkatkan produksi beras. Sedangkan produksi yang diperoleh dari lahan pertanian yang ada belum mencapai hasil yang optimal.  Upaya yang perlu dilakukan  untuk meningkatkan produksi padi diantaranya adalah memperbaiki tingkat kesuburan tanah dan metode budidaya tanaman padi.  Penelitian ini bertujuan untuk memperoleh kombinasi yang paling tepat antara bahan  organik kaya sumber hayati (BOKASHI) dan pupuk NPK terhadap produksi padi yang ditanam secara jajar legowo.  penelitian dilakukan di Kecamatan Pulau Punjung Kabupaten Dharmasraya Provinsi Sumatera Barat pada bulan Juli-Desember 2015.  Penelitian menunjukkan bahwa kombinasi bokashi + 75 % pupuk buatan memberikan hasil gabah 6.3 ton/Ha, sementara produksi padi tanpa penambahan bokashi + 100 % pupuk buatan memberikan hasil gabah 3.9 ton/Ha, dengan demikian dapat disimpulkan bahwa penambahan bokashi dapat meningkatkan produksi gabah sebanyak 2.4 ton/Ha.  Penambahan 2 ton/Ha bokashi yang ditanam secara sistem jajar legowo pada tanaman padi berpengaruh nyata terhadap pertumbuhan dan produksi tanaman padi dan dapat mengurangi penggunaan pupuk buatan sebanyak 25 %.</p><p>Kata Kunci : Bokashi, Produksi Padi, Jajar Legowo, Kombinasi</p><p> </p><p align="center">ABSTRACT</p><p align="center"> </p><p>The high rate of population growth and the conversion of agricultural land, causing the need for efforts to increase rice production. While the production obtained from existing agricultural lands yet to achieve optimal results. Efforts should be made to increase the rice production of which is to improve soil fertility and method of rice cultivation. This study aims to obtain the most appropriate combination of organic material rich in biological resources (Bokashi) and NPK fertilizer on rice production are grown Legowo row. Research conducted in the District Pulau Punjung Dharmasraya West Sumatra province in July to December 2015. The study showed that the combination of Bokashi + 75% of artificial fertilizers provide grain yield of 6.3 tonnes / ha, while rice production without adding Bokashi + 100% synthetic fertilizers provide grain yield 3.9 tonnes / ha, thus it can be concluded that the addition of bokashi can increase grain production as much as 2.4 tons / ha. Addition of 2 tons / ha planted Bokashi system Legowo row in rice plants significantly affect the growth and production of rice plants and can reduce the use of artificial fertilizers as much as 25%.</p><p>Keywords: Bokashi, Rice Production, Jajar Legowo, Combination</p>


Sign in / Sign up

Export Citation Format

Share Document