scholarly journals The Airport Gate Assignment Problem: A Survey

2014 ◽  
Vol 2014 ◽  
pp. 1-27 ◽  
Author(s):  
Abdelghani Bouras ◽  
Mageed A. Ghaleb ◽  
Umar S. Suryahatmaja ◽  
Ahmed M. Salem

The airport gate assignment problem (AGAP) is one of the most important problems operations managers face daily. Many researches have been done to solve this problem and tackle its complexity. The objective of the task is assigning each flight (aircraft) to an available gate while maximizing both conveniences to passengers and the operational efficiency of airport. This objective requires a solution that provides the ability to change and update the gate assignment data on a real time basis. In this paper, we survey the state of the art of these problems and the various methods to obtain the solution. Our survey covers both theoretical and real AGAP with the description of mathematical formulations and resolution methods such as exact algorithms, heuristic algorithms, and metaheuristic algorithms. We also provide a research trend that can inspire researchers about new problems in this area.

2018 ◽  
Vol 25 (3) ◽  
pp. 377-397 ◽  
Author(s):  
Alexander G. Kline ◽  
Darryl K. Ahner ◽  
Brian J. Lunday

2017 ◽  
Vol 22 ◽  
pp. 469-478 ◽  
Author(s):  
Abdullah Aktel ◽  
Betul Yagmahan ◽  
Tuncay Özcan ◽  
M. Mutlu Yenisey ◽  
Engin Sansarcı

2021 ◽  
Vol 72 ◽  
pp. 39-67
Author(s):  
Shaowei Cai ◽  
Jinkun Lin ◽  
Yiyuan Wang ◽  
Darren Strash

This paper explores techniques to quickly solve the maximum weight clique problem (MWCP) in very large scale sparse graphs. Due to their size, and the hardness of MWCP, it is infeasible to solve many of these graphs with exact algorithms. Although recent heuristic algorithms make progress in solving MWCP in large graphs, they still need considerable time to get a high-quality solution. In this work, we focus on solving MWCP for large sparse graphs within a short time limit. We propose a new method for MWCP which interleaves clique finding with data reduction rules. We propose novel ideas to make this process efficient, and develop an algorithm called FastWClq. Experiments on a broad range of large sparse graphs show that FastWClq finds better solutions than state-of-the-art algorithms while the running time of FastWClq is much shorter than the competitors for most instances. Further, FastWClq proves the optimality of its solutions for roughly half of the graphs, all with at least 105 vertices, with an average time of 21 seconds.


2010 ◽  
Vol 20 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Glenn Tellis ◽  
Lori Cimino ◽  
Jennifer Alberti

Abstract The purpose of this article is to provide clinical supervisors with information pertaining to state-of-the-art clinic observation technology. We use a novel video-capture technology, the Landro Play Analyzer, to supervise clinical sessions as well as to train students to improve their clinical skills. We can observe four clinical sessions simultaneously from a central observation center. In addition, speech samples can be analyzed in real-time; saved on a CD, DVD, or flash/jump drive; viewed in slow motion; paused; and analyzed with Microsoft Excel. Procedures for applying the technology for clinical training and supervision will be discussed.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 152
Author(s):  
Micha Zoutendijk ◽  
Mihaela Mitici

The problem of flight delay prediction is approached most often by predicting a delay class or value. However, the aviation industry can benefit greatly from probabilistic delay predictions on an individual flight basis, as these give insight into the uncertainty of the delay predictions. Therefore, in this study, two probabilistic forecasting algorithms, Mixture Density Networks and Random Forest regression, are applied to predict flight delays at a European airport. The algorithms estimate well the distribution of arrival and departure flight delays with a Mean Absolute Error of less than 15 min. To illustrate the utility of the estimated delay distributions, we integrate these probabilistic predictions into a probabilistic flight-to-gate assignment problem. The objective of this problem is to increase the robustness of flight-to-gate assignments. Considering probabilistic delay predictions, our proposed flight-to-gate assignment model reduces the number of conflicted aircraft by up to 74% when compared to a deterministic flight-to-gate assignment model. In general, the results illustrate the utility of considering probabilistic forecasting for robust airport operations’ optimization.


Author(s):  
Gabriel Wilkes ◽  
Roman Engelhardt ◽  
Lars Briem ◽  
Florian Dandl ◽  
Peter Vortisch ◽  
...  

This paper presents the coupling of a state-of-the-art ride-pooling fleet simulation package with the mobiTopp travel demand modeling framework. The coupling of both models enables a detailed agent- and activity-based demand model, in which travelers have the option to use ride-pooling based on real-time offers of an optimized ride-pooling operation. On the one hand, this approach allows the application of detailed mode-choice models based on agent-level attributes coming from mobiTopp functionalities. On the other hand, existing state-of-the-art ride-pooling optimization can be applied to utilize the full potential of ride-pooling. The introduced interface allows mode choice based on real-time fleet information and thereby does not require multiple iterations per simulated day to achieve a balance of ride-pooling demand and supply. The introduced methodology is applied to a case study of an example model where in total approximately 70,000 trips are performed. Simulations with a simplified mode-choice model with varying fleet size (0–150 vehicles), fares, and further fleet operators’ settings show that (i) ride-pooling can be a very attractive alternative to existing modes and (ii) the fare model can affect the mode shifts to ride-pooling. Depending on the scenario, the mode share of ride-pooling is between 7.6% and 16.8% and the average distance-weighed occupancy of the ride-pooling fleet varies between 0.75 and 1.17.


2021 ◽  
Vol 50 (1) ◽  
pp. 33-40
Author(s):  
Chenhao Ma ◽  
Yixiang Fang ◽  
Reynold Cheng ◽  
Laks V.S. Lakshmanan ◽  
Wenjie Zhang ◽  
...  

Given a directed graph G, the directed densest subgraph (DDS) problem refers to the finding of a subgraph from G, whose density is the highest among all the subgraphs of G. The DDS problem is fundamental to a wide range of applications, such as fraud detection, community mining, and graph compression. However, existing DDS solutions suffer from efficiency and scalability problems: on a threethousand- edge graph, it takes three days for one of the best exact algorithms to complete. In this paper, we develop an efficient and scalable DDS solution. We introduce the notion of [x, y]-core, which is a dense subgraph for G, and show that the densest subgraph can be accurately located through the [x, y]-core with theoretical guarantees. Based on the [x, y]-core, we develop both exact and approximation algorithms. We have performed an extensive evaluation of our approaches on eight real large datasets. The results show that our proposed solutions are up to six orders of magnitude faster than the state-of-the-art.


2021 ◽  
Vol 11 (5) ◽  
pp. 2313
Author(s):  
Inho Lee ◽  
Nakkyun Park ◽  
Hanbee Lee ◽  
Chuljin Hwang ◽  
Joo Hee Kim ◽  
...  

The rapid advances in human-friendly and wearable photoplethysmography (PPG) sensors have facilitated the continuous and real-time monitoring of physiological conditions, enabling self-health care without being restricted by location. In this paper, we focus on state-of-the-art skin-compatible PPG sensors and strategies to obtain accurate and stable sensing of biological signals adhered to human skin along with light-absorbing semiconducting materials that are classified as silicone, inorganic, and organic absorbers. The challenges of skin-compatible PPG-based monitoring technologies and their further improvements are also discussed. We expect that such technological developments will accelerate accurate diagnostic evaluation with the aid of the biomedical electronic devices.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-22
Author(s):  
Jingao Xu ◽  
Erqun Dong ◽  
Qiang Ma ◽  
Chenshu Wu ◽  
Zheng Yang

Existing indoor navigation solutions usually require pre-deployed comprehensive location services with precise indoor maps and, more importantly, all rely on dedicatedly installed or existing infrastructure. In this article, we present Pair-Navi, an infrastructure-free indoor navigation system that circumvents all these requirements by reusing a previous traveler’s (i.e., leader) trace experience to navigate future users (i.e., followers) in a Peer-to-Peer mode. Our system leverages the advances of visual simultaneous localization and mapping ( SLAM ) on commercial smartphones. Visual SLAM systems, however, are vulnerable to environmental dynamics in the precision and robustness and involve intensive computation that prohibits real-time applications. To combat environmental changes, we propose to cull non-rigid contexts and keep only the static and rigid contents in use. To enable real-time navigation on mobiles, we decouple and reorganize the highly coupled SLAM modules for leaders and followers. We implement Pair-Navi on commodity smartphones and validate its performance in three diverse buildings and two standard datasets (TUM and KITTI). Our results show that Pair-Navi achieves an immediate navigation success rate of 98.6%, which maintains as 83.4% even after 2 weeks since the leaders’ traces were collected, outperforming the state-of-the-art solutions by >50%. Being truly infrastructure-free, Pair-Navi sheds lights on practical indoor navigations for mobile users.


Sign in / Sign up

Export Citation Format

Share Document