scholarly journals Systematic Review on Human Skin-Compatible Wearable Photoplethysmography Sensors

2021 ◽  
Vol 11 (5) ◽  
pp. 2313
Author(s):  
Inho Lee ◽  
Nakkyun Park ◽  
Hanbee Lee ◽  
Chuljin Hwang ◽  
Joo Hee Kim ◽  
...  

The rapid advances in human-friendly and wearable photoplethysmography (PPG) sensors have facilitated the continuous and real-time monitoring of physiological conditions, enabling self-health care without being restricted by location. In this paper, we focus on state-of-the-art skin-compatible PPG sensors and strategies to obtain accurate and stable sensing of biological signals adhered to human skin along with light-absorbing semiconducting materials that are classified as silicone, inorganic, and organic absorbers. The challenges of skin-compatible PPG-based monitoring technologies and their further improvements are also discussed. We expect that such technological developments will accelerate accurate diagnostic evaluation with the aid of the biomedical electronic devices.

2020 ◽  
Vol 6 (30) ◽  
pp. eaba1062 ◽  
Author(s):  
Xiaodong Wu ◽  
Maruf Ahmed ◽  
Yasser Khan ◽  
Margaret E. Payne ◽  
Juan Zhu ◽  
...  

Human skin perceives external mechanical stimuli by sensing the variation in the membrane potential of skin sensory cells. Many scientists have attempted to recreate skin functions and develop electronic skins (e-skins) based on active and passive sensing mechanisms. Inspired by the skin sensory behavior, we investigated materials and electronic devices that allow us to encode mechanical stimuli into potential differences measured between two electrodes, resulting in a potentiometric mechanotransduction mechanism. We present here a potentiometric mechanotransducer that is fabricated through an all-solution processing approach. This mechanotransducer shows ultralow-power consumption, highly tunable sensing behavior, and capability to detect both static and low-frequency dynamic mechanical stimuli. Furthermore, we developed two novel classes of sensing devices, including strain-insensitive sensors and single-electrode-mode e-skins, which are challenging to achieve using the existing methods. This mechanotransduction mechanism has broad impact on robotics, prosthetics, and health care by providing a much improved human-machine interface.


2015 ◽  
Vol 19 (35) ◽  
pp. 1-142 ◽  
Author(s):  
Geoffrey Warhurst ◽  
Graham Dunn ◽  
Paul Chadwick ◽  
Bronagh Blackwood ◽  
Daniel McAuley ◽  
...  

BackgroundThere is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias.ObjectiveDetermine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture.DesignProspective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria.SettingCritical care departments within NHS hospitals in the north-west of England.ParticipantsAdult patients requiring blood culture (BC) when developing new signs of systemic inflammation.Main outcome measuresSeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard.ResultsOf 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4–16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy.ConclusionSeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error.Study registrationThe systematic review is registered as PROSPERO CRD42011001289.FundingThe National Institute for Health Research Health Technology Assessment programme. Professor Daniel McAuley and Professor Gavin D Perkins contributed to the systematic review through their funded roles as codirectors of the Intensive Care Foundation (UK).


2019 ◽  
Author(s):  
Anastazia Zunic ◽  
Padraig Corcoran ◽  
Irena Spasic

BACKGROUND Sentiment analysis (SA) is a subfield of natural language processing whose aim is to automatically classify the sentiment expressed in a free text. It has found practical applications across a wide range of societal contexts including marketing, economy, and politics. This review focuses specifically on applications related to health, which is defined as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.” OBJECTIVE This study aimed to establish the state of the art in SA related to health and well-being by conducting a systematic review of the recent literature. To capture the perspective of those individuals whose health and well-being are affected, we focused specifically on spontaneously generated content and not necessarily that of health care professionals. METHODS Our methodology is based on the guidelines for performing systematic reviews. In January 2019, we used PubMed, a multifaceted interface, to perform a literature search against MEDLINE. We identified a total of 86 relevant studies and extracted data about the datasets analyzed, discourse topics, data creators, downstream applications, algorithms used, and their evaluation. RESULTS The majority of data were collected from social networking and Web-based retailing platforms. The primary purpose of online conversations is to exchange information and provide social support online. These communities tend to form around health conditions with high severity and chronicity rates. Different treatments and services discussed include medications, vaccination, surgery, orthodontic services, individual physicians, and health care services in general. We identified 5 roles with respect to health and well-being among the authors of the types of spontaneously generated narratives considered in this review: a sufferer, an addict, a patient, a carer, and a suicide victim. Out of 86 studies considered, only 4 reported the demographic characteristics. A wide range of methods were used to perform SA. Most common choices included support vector machines, naïve Bayesian learning, decision trees, logistic regression, and adaptive boosting. In contrast with general trends in SA research, only 1 study used deep learning. The performance lags behind the state of the art achieved in other domains when measured by F-score, which was found to be below 60% on average. In the context of SA, the domain of health and well-being was found to be resource poor: few domain-specific corpora and lexica are shared publicly for research purposes. CONCLUSIONS SA results in the area of health and well-being lag behind those in other domains. It is yet unclear if this is because of the intrinsic differences between the domains and their respective sublanguages, the size of training datasets, the lack of domain-specific sentiment lexica, or the choice of algorithms.


10.2196/16023 ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. e16023 ◽  
Author(s):  
Anastazia Zunic ◽  
Padraig Corcoran ◽  
Irena Spasic

Background Sentiment analysis (SA) is a subfield of natural language processing whose aim is to automatically classify the sentiment expressed in a free text. It has found practical applications across a wide range of societal contexts including marketing, economy, and politics. This review focuses specifically on applications related to health, which is defined as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.” Objective This study aimed to establish the state of the art in SA related to health and well-being by conducting a systematic review of the recent literature. To capture the perspective of those individuals whose health and well-being are affected, we focused specifically on spontaneously generated content and not necessarily that of health care professionals. Methods Our methodology is based on the guidelines for performing systematic reviews. In January 2019, we used PubMed, a multifaceted interface, to perform a literature search against MEDLINE. We identified a total of 86 relevant studies and extracted data about the datasets analyzed, discourse topics, data creators, downstream applications, algorithms used, and their evaluation. Results The majority of data were collected from social networking and Web-based retailing platforms. The primary purpose of online conversations is to exchange information and provide social support online. These communities tend to form around health conditions with high severity and chronicity rates. Different treatments and services discussed include medications, vaccination, surgery, orthodontic services, individual physicians, and health care services in general. We identified 5 roles with respect to health and well-being among the authors of the types of spontaneously generated narratives considered in this review: a sufferer, an addict, a patient, a carer, and a suicide victim. Out of 86 studies considered, only 4 reported the demographic characteristics. A wide range of methods were used to perform SA. Most common choices included support vector machines, naïve Bayesian learning, decision trees, logistic regression, and adaptive boosting. In contrast with general trends in SA research, only 1 study used deep learning. The performance lags behind the state of the art achieved in other domains when measured by F-score, which was found to be below 60% on average. In the context of SA, the domain of health and well-being was found to be resource poor: few domain-specific corpora and lexica are shared publicly for research purposes. Conclusions SA results in the area of health and well-being lag behind those in other domains. It is yet unclear if this is because of the intrinsic differences between the domains and their respective sublanguages, the size of training datasets, the lack of domain-specific sentiment lexica, or the choice of algorithms.


2010 ◽  
Vol 20 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Glenn Tellis ◽  
Lori Cimino ◽  
Jennifer Alberti

Abstract The purpose of this article is to provide clinical supervisors with information pertaining to state-of-the-art clinic observation technology. We use a novel video-capture technology, the Landro Play Analyzer, to supervise clinical sessions as well as to train students to improve their clinical skills. We can observe four clinical sessions simultaneously from a central observation center. In addition, speech samples can be analyzed in real-time; saved on a CD, DVD, or flash/jump drive; viewed in slow motion; paused; and analyzed with Microsoft Excel. Procedures for applying the technology for clinical training and supervision will be discussed.


2007 ◽  
Vol 30 (4) ◽  
pp. 51 ◽  
Author(s):  
A. Baranchuk ◽  
G. Dagnone ◽  
P. Fowler ◽  
M. N. Harrison ◽  
L. Lisnevskaia ◽  
...  

Electrocardiography (ECG) interpretation is an essential skill for physicians as well as for many other health care professionals. Continuing education is necessary to maintain these skills. The process of teaching and learning ECG interpretation is complex and involves both deductive mechanisms and recognition of patterns for different clinical situations (“pattern recognition”). The successful methodologies of interactive sessions and real time problem based learning have never been evaluated with a long distance education model. To evaluate the efficacy of broadcasting ECG rounds to different hospitals in the Southeastern Ontario region; to perform qualitative research to determine the impact of this methodology in developing and maintaining skills in ECG interpretation. ECG rounds are held weekly at Kingston General Hospital and will be transmitted live to Napanee, Belleville, Oshawa, Peterborough and Brockville. The teaching methodology is based on real ECG cases. The audience is invited to analyze the ECG case and the coordinator will introduce comments to guide the case through the proper algorithm. Final interpretation will be achieved emphasizing the deductive process and the relevance of each case. An evaluation will be filled out by each participant at the end of each session. Videoconferencing works through a vast array of internet LANs, WANs, ISDN phone lines, routers, switches, firewalls and Codecs (Coder/Decoder) and bridges. A videoconference Codec takes the analog audio and video signal codes and compresses it into a digital signal and transmits that digital signal to another Codec where the signal is decompressed and retranslated back into analog video and audio. This compression and decompression allows large amounts of data to be transferred across a network at close to real time (384 kbps with 30 frames of video per second). Videoconferencing communication works on voice activation so whichever site is speaking has the floor and is seen by all the participating sites. A continuous presence mode allows each site to have the same visual and audio involvement as the host site. A bridged multipoint can connect between 8 and 12 sites simultaneously. This innovative methodology for teaching ECG will facilitate access to developing and maintaining skills in ECG interpretation for a large number of health care providers. Bertsch TF, Callas PW, Rubin A. Effectiveness of lectures attended via interactive video conferencing versus in-person in preparing third-year internal medicine clerkship students for clinical practice examinations. Teach Learn Med 2007; 19(1):4-8. Yellowlees PM, Hogarth M, Hilty DM. The importance of distributed broadband networks to academic biomedical research and education programs. Acad Psychaitry 2006;30:451-455


2020 ◽  
Vol 27 (12) ◽  
pp. 1276-1287
Author(s):  
Brigida Anna Maiorano ◽  
Giovanni Schinzari ◽  
Sabrina Chiloiro ◽  
Felicia Visconti ◽  
Domenico Milardi ◽  
...  

Pancreatic neuroendocrine tumors (PanNETs) are rare tumors having usually an indolent behavior, but sometimes with unpredictable aggressiveness. PanNETs are more often non-functioning (NF), unable to produce functioning hormones, while 10-30% present as functioning (F) - PanNETs, such as insulinomas , gastrinomas , and other rare tumors. Diagnostic and prognostic markers, but also new therapeutic targets, are still lacking. Proteomics techniques represent therefore promising approaches for the future management of PanNETs. We conducted a systematic review to summarize the state of the art of proteomics in PanNETs. A total of 9 studies were included, focusing both on NF- and F-PanNETs. Indeed, proteomics is useful for the diagnosis, the prognosis and the detection of therapeutic targets. However, further studies are required. It is also warranted to standardize the analysis methods and the collection techniques, in order to validate proteins with a relevance in the personalized approach to PanNETs management.


Sign in / Sign up

Export Citation Format

Share Document