scholarly journals PANI-Ag-Cu Nanocomposite Thin Films Based Impedimetric Microbial Sensor for Detection ofE. coliBacteria

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Huda Abdullah ◽  
Norshafadzila Mohammad Naim ◽  
Noor Azwen Noor Azmy ◽  
Aidil Abdul Hamid

PANI-Ag-Cu nanocomposite thin films were prepared by sol-gel method and deposited on the glass substrate using spin coating technique. Polyaniline was synthesized by chemical oxidative polymerization of aniline monomer in the presence of nitric acid. The films were characterized using XRD, FTIR, and UV-Visible spectroscopy. The performance of the sensor was conducted using electrochemical impedance spectroscopy to obtain the change in impedance of the sensor film before and after incubation withE. colibacteria in water. The peaks in XRD pattern confirm the presence of Ag and Cu nanoparticles in face-centered cubic structure. FTIR analysis shows the stretching of N–H in the polyaniline structure. The absorption band from UV-Visible spectroscopy shows high peaks between 400 nm and 500 nm which indicate the presence of Ag and Cu nanoparticles, respectively. Impedance analysis indicates that the change in impedance of the films decreases with the presence ofE. coli. The sensitivity onE. coliincreases for the sample with high concentration of Cu.

2014 ◽  
Vol 911 ◽  
pp. 131-135 ◽  
Author(s):  
H. Abdullah ◽  
Noor Azwen Noor Azmy ◽  
Norshafadzila Mohammad Naim ◽  
Aisyah Bolhan ◽  
Aidil Abdul Hamid ◽  
...  

Polymers are excellent host materials for nanoparticles of metals and semiconductors. PVAAgCu nanocomposite was synthesized from chemical reduction, whereas PANIAgCu nanocomposite was synthesized by chemical oxidative polymerization. PVAAgCu and PANIAgCu thin films were deposited on the glass substrate by spin coating technique. The films were characterized by using XRD and AFM. The sensitivity of the samples was analyzed by IV measurement. The peaks in XRD patterns confirm the presence of Ag-Cu nanoparticles in face centered cubic structure. AFM images show the roughness of PVAAgCu and PANIAgCu increased as Ag concentration decreased and Cu concentration increased. I-V measurements indicate that the change in the current of the films increases with the presence of E. coli. The sensitivity on E. coli increases for PVAAgCu and PANIAgCu thin films with high concentration of Cu.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Norshafadzila Mohammad Naim ◽  
H. Abdullah ◽  
Akrajas Ali Umar ◽  
Aidil Abdul Hamid ◽  
Sahbudin Shaari

PANI-Ag-Fe nanocomposite thin films based electrochemicalE. colisensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300°C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted usingI-Vmeasurement electrochemical impedance spectroscopy (EIS). The sensitivity upon the presence ofE. coliwas measured in clean water andE. colisolution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm–424 nm and 426 nm–464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films uponE. colicells in liquid medium indicates the sensitivity increases after annealing.


2015 ◽  
Vol 1119 ◽  
pp. 101-105 ◽  
Author(s):  
Huda Abdullah ◽  
Norshafadzila Mohammad Naim ◽  
Noor Azwen Noor Azmy ◽  
Akrajas Ali Umar ◽  
Aidil Abdul Hamid ◽  
...  

The nanocomposite of polyaniline (PANI) and bimetallic nanoparticles of silver and iron were prepared by the oxidative polymerization of aniline and the reduction process of bimetallic compound with the presence of nitric acid and PVA. The nanocomposite thin films in various compositions were deposited using spin-coating technique. The films were characterized by UV-visible spectroscopy to study the optical and structural properties. The microphotograph from TEM image shows the nanospherical of Ag-Fe alloy particles in 5 – 25 nm diameter size. The sensitivity performance was tested using I-V measurement to obtain the changes of resistivity before and after the incubation with E. coli bacteria in water. UV-visible absorption bands show the single absorbance peak at 422 – 424 nm in each band indicating the Ag-Fe alloy nanoparticles form. I-V characteristic shows the sample which contains Fe-rich Ag-Fe alloy performed high sensitivity on E. coli.


2016 ◽  
Vol 846 ◽  
pp. 641-649 ◽  
Author(s):  
Norshafadzila Mohammad Naim ◽  
Huda Abdullah ◽  
Noor Azwen Noor Azmy ◽  
Akrajas Ali Umar ◽  
Aidil Abdul Hamid ◽  
...  

Conducting polymers are excellent host materials for nanoparticles of metals and semiconductors. PANI-Ag-Co nanocomposite was prepared by chemical oxidative polymerization of aniline monomer in the presence of nitric acid. PANI-Ag-Co thin films were deposited on the glass substrate using spin-coating technique. The films were characterized by UV-Vis spectroscopy, XRD, AFM and TEM to analyze the internal structure and surface morphology. The performance of the sensor was conducted using I–V measurement to obtain the changes in the current before and after the incubation with E. coli bacteria in water. In UV-visible absorbance bands, a single peak appears at 421.6 nm in each band indicating the Ag-Co alloy nanoparticles were formed. The peaks in the XRD patterns show the crystals are oriented along (111) planes for Ag while (200) plane for Co. AFM images indicate the surface roughness of the PANI-Ag-Co films decreases when the concentration of Co increased. TEM image shows spherical shaped of Ag-Co alloy particles with diameter in the range of 6 – 10 nm. I–V measurements show that the current change of the films increased when incubated in E. coli. The sensitivity on E. coli increases as we increase the Co concentration. PANI-Ag-Co nanocomposite thin films can be explored further for microbial sensor application in future study.


2012 ◽  
Vol 1388 ◽  
Author(s):  
Punya A. Basnayaka ◽  
Farah Alvi ◽  
Manoj K. Ram ◽  
Robert Tufts ◽  
Ashok Kumar

ABSTRACTThe effect of two substituent groups, ortho-methoxy (-OCH3) and methyl (-CH3) in aniline, have been studied for supercapacitor applications. The polyaniline (PANI), poly (o-anisidine) (POA) and poly (o-toluidine) (POT) have been synthesized by oxidative polymerization method, and characterized by Cyclic Voltammetry (CV), UV–visible spectroscopy, Raman spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. The specific capacitance, charging/discharging and electrochemical impedance characteristics of the supercapacitor fabricated using PANI, POA, as well as POT electrodes are evaluated in 2M H2SO4 electrolytic media. The highest specific capacitance of 400 F/g is calculated for PANI, whereas, POA and POT have exhibited 360 F/g and 325 F/g capacitance in supercapacitor studies.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 546 ◽  
Author(s):  
Milan Babu Poudel ◽  
Changho Yu ◽  
Han Joo Kim

We report a polyaniline-wrapped, manganese-doped titanium oxide (PANi/Mn-TiO2) nanoparticle composite for supercapacitor electrode and photocatalytic degradation. The PANi/Mn-TiO2 nanoparticles were synthesized using a solvothermal process, followed by oxidative polymerization of aniline. The structural properties of studied materials were confirmed by XRD, FTIR, HRTEM, FESEM, and UV visible spectroscopy. The as-prepared PANi/Mn-TiO2 nanoparticles revealed admirable electrochemical performance with a specific capacitance of 635.87 F g−1 at a current density of 1 A g−1 with a notable life cycle retention of 91% after 5000 charge/discharge cycles. Furthermore, the asymmetric cell with PANi/Mn-TiO2 as a positive electrode exhibited energy density of 18.66 W h kg−1 with excellent stability. Moreover, the PANi/Mn-TiO2 had promising photocatalytic activity for methylene blue degradation. The improved performance of PANi/Mn-TiO2 nanoparticles is attributed to the well-built synergetic effect of components that lead to significant reduction of band gap energy and charge transfer resistance, as revealed by UV visible spectroscopy and electrochemical impedance spectroscopy.


Author(s):  
Huda Abdullah ◽  
Muhamad Aiman Kamarudin ◽  
Norshafadzila Mohammad Naim ◽  
Aidil Abdul Hamid ◽  
Mohd Hafiz Dzarfan Othman

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Ousama Ifguis

Thin films of epoxy/silicone loaded with N-CNT were prepared by a method of sol-gel and deposited on ITO glass substrates at room temperature. The properties of the loaded monolayer samples (0.00, 0.07, 0.1, and 0.2 wt% N-CNTs) were analyzed by UV-visible spectroscopy. The transmittance for the unloaded thin films is 88%, and an average transmittance for the loaded thin film is about 42 to 67% in the visible range. The optical properties were studied from UV-visible spectroscopy to examine the transmission spectrum, optical gap, Tauc verified optical gap, and Urbach energy, based on the envelope method proposed by Swanepoel (1983). The results indicate that the adjusted optical gap of the film has a direct optical transition with an optical gap of 3.61 eV for unloaded thin films and 3.55 to 3.19 eV for loaded thin films depending on the loading rate. The optical gap is appropriately adapted to the direct transition model proposed by Tauc et al. (1966); its value was 3.6 eV for unloaded thin films and from 3.38 to 3.1 eV for loaded thin films; then, we determined the Urbach energy which is inversely variable with the optical gap, where Urbach’s energy is 0.19 eV for the unloaded thin films and varies from 0.43 to 1.33 eV for the loaded thin films with increasing rate of N-CNTs. Finally, nanocomposite epoxy/silicone N-CNT films can be developed as electrically conductive materials with specific optical characteristics, giving the possibility to be used in electrooptical applications.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2021 ◽  
Author(s):  
Ahmed ZITI ◽  
Bouchaib HARTITI ◽  
Amine BELAFHAILI ◽  
Hicham LABRIM ◽  
Salah FADILI ◽  
...  

Abstract Quaternary semiconductor Cu2NiSnS4 thin film was made by the sol-gel method associated to dip-coating technique on ordinary glass substrates. In this paper, we have studied the impact of dip-coating cycle at different cycles: 4, 5 and 6 on the structural, compositional, morphological, optical and electrical characteristics. CNTS thin films have been analyzed by various characterization techniques including: X-ray diffractometer (XRD), Raman measurements, scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS), UV-visible spectroscopy and four-point probe method. XRD spectra demonstrated the formation of cubic Cu2NiSnS4 with privileged orientation at (111) plane. Crystallite size of cubic CNTS thin films increase with from 6.30 to 9.52 with dip-coating cycle augmented. Raman scattering confirmed the existence of CNTS thin films by Raman vibrational mode positioned at 332 cm− 1. EDS investigations showed near-stoichiometry of CNTS sample deposited at 5 cycles. Scanning electron microscope showed uniform surface morphologies without any crack. UV-visible spectroscopy indicated that the optical absorption values are larger than 104 cm− 1, Estimated band gap energy of CNTS absorber layers decrease from 1.64 to 1.5 eV with dip-coating cycle increased. The electrical conductivity of CNTS thin films increase from 0.19 to 4.16 (Ω cm)-1. These characteristics are suitable for solar cells applications.


Sign in / Sign up

Export Citation Format

Share Document