scholarly journals Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
ChunMei Liu ◽  
HaiRong Yuan ◽  
DeXun Zou ◽  
YanPing Liu ◽  
BaoNing Zhu ◽  
...  

This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2207
Author(s):  
Yao Lu ◽  
Hairong Yuan ◽  
Xiaoyu Zuo ◽  
Yanqing Chang ◽  
Xiujin Li

The corn stover (CS)’s compact structure makes it challenging for microorganisms to use in anaerobic digestion (AD). Therefore, improving CS biodegradability has become a key focus in AD studies. Methods are being targeted at the pretreatment of CS, combining advanced urea with mild temperature hydrotherm pretreatment to study its effect on promoting the AD process of CS. The biomethane yield, physicochemical structure, and microbial community characteristics were investigated. CS samples were assigned into groups differed by a range of pretreatment times (from 24 to 96 h) and set at a temperature of 50 °C with a 2% urea addition. Results revealed that the 72-h group obtained the highest biomethane yield of 205 mL/g VS−1, volatile solid (VS) and total solid (TS) removal rates of 69.3% and 47.7%, which were 36.7%, 25.3% and 27.5% higher than those of untreated one, respectively. After conducting several analyses, results confirmed the pretreatment as a method for altering CS microstructures benefits biomethane production. The most resounding differences between pretreated and untreated groups were observed within a microbial community, an integral factor for improved AD performance. This study serves to confirm that this specific pretreatment is an effective method for enhancing biomethane production in CS.


2020 ◽  
Vol 306 ◽  
pp. 123159 ◽  
Author(s):  
Wei Wei ◽  
Wenshan Guo ◽  
Huu Hao Ngo ◽  
Giorgio Mannina ◽  
Dongbo Wang ◽  
...  

2021 ◽  
Vol 11 (22) ◽  
pp. 10884
Author(s):  
Lei Xiao ◽  
Man Yang ◽  
Di Hu ◽  
Yuxia Mei ◽  
Shumiao Zhao ◽  
...  

Neutralization with liquid digestate and CO2 was compared herein to adjust the pH of lime-treated corn stover. The effects on the thermophilic (55 °C) anaerobic digestion were also analyzed. Liquid digestate neutralization (LDN) caused a decrease in pH from 10.5 to 7.5 in 60 h and accumulation of acetic/isobutyric acids. The CO2 neutralization (CN) under solid-state conditions reduced the pH from 10.5 to 8.5 in 30 min, which is faster than that of LDN and did not affect the subsequent anaerobic digestion. Biomethane production rate indicates that LDN contributed to the performance of anaerobic digestion, but this was not sufficient to compensate for the loss of total biomethane yield, resulting in a negative net profit (i.e., revenue from increased energy production minus reagent cost). For CN under solid-state conditions, the biomethane production was highest in both liquid- and solid-state anaerobic digestion, and also obtained a net profit of 98.74–100.89 RMB/tonne dry biomass. Therefore, the solid-state condition CN is a more efficient and economic method for adjusting initial pH of lime-treated corn stover.


2020 ◽  
Vol 4 (1) ◽  
pp. 44
Author(s):  
Lukhi Mulia Shitophyta ◽  
Gita Indah Budiarti ◽  
Yusuf Eko Nugroho ◽  
Dika Fajariyanto

Biogas telah menjadi bahan bakar alternatif untuk mengurangi kelangkaan bahan bakar fosil. Biogas dapat dihasilkan dari limbah makanan seperti tongkol jagung. Tongkol jagung merupakan biomassa lignoselulosa dan mengandung kandungan total solid (TS) >15%. Produksi biogas dilakukan dengan solid-state anaerobic digestion dengan penambahan co-digestion limbah makanan. Co-digestion berfungsi untuk membantu proses pemecahan tongkol jagung. Tujuan penelitian ini adalah untuk mengkaji pengaruh persentase limbah makanan, reduksi volatile solid (VS), dan model kinetika produksi biogas dari tongkol jagung. Hasil peneltiian menunjukkan bahwa limbah makanan berpengaruh signifikan terhadap yield biogas (p < 0,05). Yield biogas tertinggi sebesar 584,49 mL g-1 VS-1 dan reduksi VS tertinggi sebesar 40% diperoleh pada limbah makanan 20%. Model kinetika produksi biogas dari tongkol jagung dan limbah makanan mengikuti model kinetika orde pertama.Biogas has become an alternative fuel to reduce the lack of fossil fuel. Biogas can be produced from organic wastes such as corn stover. Corn stover is a typical lignocellulosic biomass and contains a total solid (TS) content higher of 15%. Biogas production was conducted by solid-state anaerobic digestion with addition co-digestion of food waste. Co-digestion is useful to help the digestion of corn stover. The purposes of this study were to investigate the effect of the percentage of food waste, volatile solid (VS) reduction, and kinetic model on biogas production from corn stover. Results showed that food waste had a significant effect on biogas yield (p < 0.05). The highest biogas yield of 584.49 mL g-1 VS-1 and the highest VS reduction of 40% was obtained at food waste of 20%. The kinetic model of biogas production from corn stover and food waste followed the first-order kinetic model.


2021 ◽  
Vol 13 (19) ◽  
pp. 10504
Author(s):  
Akinola David Olugbemide ◽  
Ana Oberlintner ◽  
Uroš Novak ◽  
Blaž Likozar

The valorization study of the largely available corn stover waste biomass after pretreatment with deep eutectic solvent (DES) for biomethane production in one-liter glass bioreactors by anaerobic digestion for 21 days was presented. Ammonium thiocyanate and urea deep eutectic solvent pretreatments under different conditions in terms of the components ratio and temperature were examined on corn stover waste biomass. The lignocellulose biomass was characterized in detail for its chemistry and morphology to determine the effect of the pretreatment on the natural biocomposite. Furthermore, the implications on biomethane production through anaerobic digestion with different loadings of corn stover biomass at 35 g/L and 50 g/L were tested. The results showed an increase of 48% for a cumulative biomethane production for a DES-pretreated biomass, using a solid-to-liquid ratio of 1:2 at 100 °C for 60 min, which is a strong indication that DES-pretreatment significantly enhanced biomethane production.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


2019 ◽  
Vol 11 (7) ◽  
pp. 3293-3301
Author(s):  
Mingyu Qian ◽  
Ye Zhou ◽  
Yixin Zhang ◽  
Zhenxin Wang ◽  
Ruihua Li ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Agnese Coscetta ◽  
Aldo Minardo ◽  
Lucio Olivares ◽  
Maurizio Mirabile ◽  
Mario Longo ◽  
...  

Wind turbine (WT) blade is one of the most important components in WTs, as it is the key component for receiving wind energy and has direct influence on WT operation stability. As the size of modern turbine blade increases, condition monitoring and maintenance of blades become more important. Strain detection is one of the most effective methods to monitor blade conditions. In this paper, a distributed fiber-optic strain sensor is used for blade monitoring. Preliminary experimental tests have been carried out over a 14 m long WT composite blade, demonstrating the possibility of performing distributed strain and vibration measurements.


Sign in / Sign up

Export Citation Format

Share Document