scholarly journals Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Liviu Feller ◽  
Yusuf Jadwat ◽  
Razia A. G. Khammissa ◽  
Robin Meyerov ◽  
Israel Schechter ◽  
...  

The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration.

2020 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Lee Kian Khoo ◽  
Sirichai Kiattavorncharoen ◽  
Verasak Pairuchvej ◽  
Nisanat Lakkhanachatpan ◽  
Natthamet Wongsirichat ◽  
...  

Introduction: Implant surface modification methods have recently involved laser treatment to achieve the desired implant surface characteristics. Meanwhile, surface modification could potentially introduce foreign elements to the implant surface during the manufacturing process. Objectives: The study aimed to investigate the surface chemistry and topography of commercially available laser-modified titanium implants, together with evaluating the cell morphology and cell adhesion of human fetal osteoblast (hFOB) seeded onto the same implants. Method: Six (6) samples of commercially available laser-modified titanium implants were investigated. These implants were manufactured by two different companies. Three (3) implants were made from commercially pure grade 4 Titanium (Brand X); and three were made from grade 5 Ti6Al4V (Brand Y). The surface topography of these implants was analyzed by scanning electron microscope (SEM) and the surface chemistry was evaluated with electron dispersive x-ray spectroscopy(EDS). Human fetal osteoblasts were seeded onto the implant fixtures to investigate the biocompatibility and adhesion. Results & Discussion: Brand X displayed dark areas under SEM while it was rarely found on brand Y. These dark areas were consistent with their organic matter. The hFOB cell experiments revealed cell adhesion with filopodia on Brand X samples which is consistent with cell maturation. The cells on Brand Y were morphologically round and lacked projections, one sample was devoid of any noticeable cells under SEM. Cell adhesion was observed early at 48 hrs in laser-irradiated titanium fixtures from both the brands. Conclusion: The presence of organic impurities in Brand X should not be overlooked because disruption of the osseointegration process may occur due to the rejection of the biomaterial in an in-vivo model. Nevertheless, there was insufficient evidence to link implant failure directly with carbon contaminated implant surfaces. Further studies to determine the toxicity of Vanadium from Ti6Al4V in an in-vivo environment should indicate the reason for different cell maturation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Karin Breding ◽  
Ryo Jimbo ◽  
Mariko Hayashi ◽  
Ying Xue ◽  
Kamal Mustafa ◽  
...  

Osseointegration is dependent on implant surface characteristics, including surface chemistry and topography. The presence of nanosized calcium phosphates on the implant surface is interesting to investigate since they affect both the nanotopography and surface chemistry, forming a bone mineral resembling surface. In this work, the osseointegration of titanium implants with and without the presence of hydroxyapatite (HA) nanocrystals has been evaluatedin vivo. The integration was examined using removal torque measurements and real-time polymerase chain reaction (RT-PCR) analysis. The study was performed using two healing time points, 3 and 12 weeks. The results showed that the torque needed to remove the implants was insignificant between the non- and HA-coated implants, both at weeks 3 and 12. The RT-PCR, however, showed significant differences for osteoblast, osteoclast, and proinflammation markers when HA nanocrystals were present.


2021 ◽  
Author(s):  
Ung-Gyu Kim ◽  
Jung-Yoo Choi ◽  
Junbeom Lee ◽  
In-Sung Yeo

Abstract The dental implant relies on osseointegration and the response of bone to the implant surface. This process comprises bidirectional bone formation, including bone deposition on the implant surface toward the existing bone (contact osteogenesis) and vice versa (distance osteogenesis). It is unclear whether these processes are independent or whether contact osteogenesis is initiated by other factors. Therefore, this study aimed to identify the initiator of contact osteogenesis. We hypothesized that contact osteogenesis does not occur when it is physically isolated from distance osteogenesis, which would imply that some factors from the wounded bone normally promote contact osteogenesis. Using a rabbit tibial implant model, we tested the effects of human recombinant bone morphogenetic protein-2 (BMP-2) and plasma-rich plasma, which are possible initiators from bone and blood, respectively. Titanium implants with BMP-2 showed a better bone-to-implant contact (BIC) ratio. We concluded that BMP-2 initiated contact osteogenesis on the surface of titanium implants.


2020 ◽  
Vol 61 (6) ◽  
pp. 177-187
Author(s):  
Till Kämmerer ◽  
Tony Lesmeister ◽  
Victor Palarie ◽  
Eik Schiegnitz ◽  
Andrea Schröter ◽  
...  

Introduction: We aimed to compare implant osseointegration with calcium phosphate (CaP) surfaces and rough subtractive-treated sandblasted/acid etched surfaces (SA) in an in vivo minipig mandible model. Materials and Methods: A total of 36 cylindrical press-fit implants with two different surfaces (CaP, n = 18; SA, n = 18) were inserted bilaterally into the mandible of 9 adult female minipigs. After 2, 4, and 8 weeks, we analyzed the cortical bone-to-implant contact (cBIC; %) and area coverage of bone-to-implant contact within representative bone chambers (aBIC; %). Results: After 2 weeks, CaP implants showed no significant increase in cBIC and aBIC compared to SA (cBIC: mean 38 ± 5 vs. 16 ± 11%; aBIC: mean 21 ± 1 vs. 6 ± 9%). Two CaP implants failed to achieve osseointegration. After 4 weeks, no statistical difference between CaP and SA was seen for cBIC (mean 54 ± 15 vs. 43 ± 16%) and aBIC (mean 43 ± 28 vs. 32 ± 6). However, we excluded two implants in each group due to failure of osseointegration. After 8 weeks, we observed no significant intergroup differences (cBIC: 18 ± 9 vs. 18 ± 20%; aBIC: 13 ± 8 vs. 16 ± 9%). Again, three CaP implants and two SA implants had to be excluded due to failure of osseointegration. Conclusion: Due to multiple implant losses, we cannot recommend the oral mandibular minipig in vivo model for future endosseous implant research. Considering the higher rate of osseointegration failure, CaP coatings may provide an alternative to common subtractive implant surface modifications in the early phase post-insertion.


2007 ◽  
Vol 361-363 ◽  
pp. 749-752
Author(s):  
J. Strnad ◽  
Jan Macháček ◽  
Z. Strnad ◽  
C. Povýšil ◽  
Marie Strnadová

This study was carried out to assess the bone response to alkali-modified titanium implant surface (Bio surface), using histomorphometric investigation on an animal model. The mean net contribution of the Bio surface to the increase in bone implant contact (BIC) with reference to the turned, machined surface was evaluated at 7.94 % (BIC/week), within the first five weeks of healing. The contribution was expressed as the difference in the osseointegration rates ( BIC/'healing time) between the implants with alkali modified surface (Bio surface) and those with turned, machined surface. The surface characteristics that differed between the implant surfaces, i.e. surface morphology, specific surface area, contact angle, hydroxylation/hydration, may represent factors that influence the rate of osseointegration.


2019 ◽  
Vol 30 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Carlos Eduardo Secco Mafra ◽  
Marcelo Sirolli ◽  
Marília Cabral Cavalcanti ◽  
Rodrigo Basílio Albuquerque dos Santos ◽  
Cláudio Mendes Pannuti ◽  
...  

Abstract The aim of this study was to evaluate the effect of a lower dose of parathyroid hormone- PTH (1-34) on osteogenic potential of bone healing around titanium implants inserted into the tibia of rats. A blind parallel study was conducted in 45 adult male Wistar rats. Each rat received one titanium implant (4.5 x 2.2 mm) and was randomly assigned to receive subcutaneous injections, three times/week for 30 days, of the following treatments: group 1 - 40 µg/kg of PTH (1-34) (n=15); group 2 - 2 µg/kg of PTH (1-34) (n=15) and; group 3 - only the vehicle required for hormone dissolution (n=15). Thirty days after surgery, the animals were sacrificed and specimens containing the implant and the surrounding bone were removed and processed for non-decalcified sections. The sections were evaluated according to the following histometric parameters: proportion of mineralized tissue (PMT) adjacent to the implant threads (500 µm band); bone filling within the limits of the threads (BF) and; bone-to-implant contact (BIC). For the cortical region, both hormone dosages (groups 1 and 2) promoted better results, for all parameters, when compared to control group (p<0.05). Similar results were observed for the BF parameter in the cancellous region (p=0.0394). Therefore, systemic administration of PTH (1-34) stimulates bone formation around titanium implants, even at low doses.


2012 ◽  
Vol 1486 ◽  
Author(s):  
Lei Yang ◽  
Maswazi Sihlabela ◽  
Brian W. Sheldon ◽  
Thomas J. Webster

ABSTRACTNanostructured surfaces have demonstrated extraordinary capacity to influence protein adsorption and cellular responses, although the mechanisms behind such capacity are still not clear to date. In the present study, the role of surface energy associated with nanostructured stiff surfaces in modulating fibronectin and consequently osteoblast (OB, bone forming cells) responses was investigated. Nanocrystalline diamond (NCD) and submicron crystalline diamond (SMCD) films with controllable surface energy were prepared by microwave-enhanced plasma chemical vapor deposition (MPCVD) techniques. Fibronectin adsorption on the diamond films with varied surface energy values was measured via the enzyme-linked immunosorbent assay (ELISA) and the relationship between the surface energy and fibronectin adsorption was studied. OB aggregates (each containing 30∼50 cells) on the NCD with varied surface energy values were also studied. The results indicated that fibronectin adsorption on nanostructured surfaces was closely related to both surface energy and material microstructures, and osteoblast spreading and migration on stiff nanosurfaces are surface energy-driven processes.


2007 ◽  
Vol 361-363 ◽  
pp. 613-616
Author(s):  
Laurent Le Guenhennec ◽  
Eric Goyenvalle ◽  
Marco A. Lopez-Heredia ◽  
Pierre Weiss ◽  
Yves Amouriq ◽  
...  

Titanium dental implants presenting different blasted surfaces and an OCP coated surfaces have been implanted in the femoral epiphysis of rabbits. A comparable osseointegration has been observed for the titanium implants blasted either with alumina or biphasic calcium phosphates particles whatever the delay of implantation (2 or 8 weeks). A higher bone to implant contact has been observed for the SLA and OCP coated implants as compared to the grit-blasted groups.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yarong Wang ◽  
Zekun Gan ◽  
Haibin Lu ◽  
Ziyi Liu ◽  
Peng Shang ◽  
...  

Nowadays, the bone osseointegration in different environments is comparable, but the mechanism is unclear. This study aimed to investigate the osseointegration of different bioactive titanium surfaces under normoxic or high-altitude hypoxic environments. Titanium implants were subjected to one of two surface treatments: (1) sanding, blasting, and acid etching to obtain a rough surface, or (2) extensive polishing to obtain a smooth surface. Changes in the morphology, proliferation, and protein expression of osteoblasts on the rough and smooth surfaces were examined, and bone formation was studied through western blotting and animal-based experiments. Our findings found that a hypoxic environment and rough titanium implant surface promoted the osteogenic differentiation of osteoblasts and activated the JAK1/STAT1/HIF-1α pathway in vitro. The animal study revealed that following implant insertion in tibia of rabbit, bone repair at high altitudes was slower than that at low altitudes (i.e., in plains) after 2weeks; however, bone formation did not differ significantly after 4weeks. The results of our study showed that: (1) The altitude hypoxia environment would affect the early osseointegration of titanium implants while titanium implants with rough surfaces can mitigate the effects of this hypoxic environment on osseointegration, (2) the mechanism may be related to the activation of JAK1/STAT1/HIF-1α pathway, and (3) our results suggest the osteogenesis of titanium implants, such as oral implants, is closely related to the oxygen environment. Clinical doctors, especially dentists, should pay attention to the influence of hypoxia on early osseointegration in patients with high altitude. For example, it is better to choose an implant system with rough implant surface in the oral cavity of patients with tooth loss at high altitude.


2021 ◽  
Author(s):  
Dineli Ranathunga ◽  
Alexandra Arteaga ◽  
Claudia C. Biguetti ◽  
Danieli C. Rodrigues ◽  
Steven O. Nielsen

<div><div><div><p>Due to its excellent chemical and mechanical properties, titanium has become the material of choice for orthopedic and dental implants to promote rehabilitation via bone anchorage and osseointegration. Titanium osseointegration is partially related to its capability to form a TiO<sub>2</sub> surface layer and its ability to interact with key endogenous proteins immediately upon implantation, establishing the first bone-biomaterial interface. Surgical trauma caused by implantation results in the release of High Mobility Group Box 1 (HMGB1) protein, which is a prototypic DAMP (Damage Associated Molecular Pattern) with multiple roles in inflammation and tissue healing. To develop different surface strategies that improve the clinical outcome of titanium-based implants by controlling their biological activity, a molecular-scale understanding of HMGB1-surface interactions is desired. Here, we use molecular dynamics (MD) computer simulations to provide direct insight into the HMGB1 interactions and the possible molecular arrangements of HMGB1 on fully hydroxylated and non-hydroxylated rutile (110) TiO<sub>2</sub> surfaces. The results establish that HMGB1 is most likely to be adsorbed directly onto the surface regardless of surface hydroxylation, which is undesirable because it could affect its biological activity by causing structural changes to the protein. The hydroxylated TiO<sub>2</sub> surface shows a greater affinity for HMGB1 than the non-hydroxylated surface. The water layer on the non-hydroxylated TiO<sub>2</sub> surface prevents ions and the protein from directly contacting the surface. However, it was observed that if the ionic strength increases, the total number of ions adsorbed on the two surfaces increases, and the protein’s direct adsorption ability decreases. These findings will help to understand the HMGB1-TiO<sub>2</sub> interactions upon implantation, as well as the development of different surface strategies by introducing ions or ionic materials to the titanium implant surface to modulate its interactions with HMGB1 to preserve biological function.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document