scholarly journals Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Abdulmajeed H. J. Al-Jumaily ◽  
A. Sali ◽  
J. S. Mandeep ◽  
Alyani Ismail

Recent advances in satellite communication technologies in the tropical regions have led to significant increase in the demand for services and applications that require high channel quality for mobile satellite terminals. Determination and quantification of these requirements are important to optimize service quality, particularly in the Malaysian region. Moreover, the tests on current satellite propagation models were carried out at temperate regions whose environmental characteristics are much different from those in Malaysia. This difference renders these propagation models inapplicable and irrelevant to tropical regions in general. This paper presents the link characteristics observations and performance analysis with propagation measurements done in tropical region to provide an accurate database regarding rain and power arches supply (PAs) attenuations in the tropics for mobile scenarios. Hence, an extension for improving the performance assessment and analysis of satellite/transmission has been achieved. The Malaysia propagation measurement for mobile scenario (Malaysia-PMMS) enables first-hand coarse estimation and attenuation analysis, because the attenuation resulting from rain and PAs becomes easily amenable for measurement. Parallel to that, the measured attenuation has been compared with that of the simulated output at noise floor level. The underlying analytical tool is validated by measurements specific at tropical region, for dynamic model of mobile satellite links operating at higher than 10 GHz.

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2253
Author(s):  
Myrish Pacleb ◽  
O-Young Jeong ◽  
Jeom-Sig Lee ◽  
Thelma Padolina ◽  
Rustum Braceros ◽  
...  

Temperate japonica rice is mainly cultivated in temperate regions. Many temperate japonica varieties have a superior grain quality that is preferred in Northeast Asian countries such as Japan, Korea, and China. The changes in consumers’ preferences in Southeast Asia and Western countries has contributed to increasing the demand for temperate japonica. Most temperate japonica varieties developed in temperate regions typically exhibit extra-early flowering under the short-day conditions in the tropics, which usually results in severely reduced yields. Since 1992, we have been developing temperate japonica varieties that can adapt to tropical environments to meet the increasing demand for temperate japonica rice, having released six varieties in the Philippines. Especially, the yield of one of the temperate japonica varieties, Japonica 7, was comparable to the yields of leading indica varieties in the Philippines. Here, we discuss the current breeding initiatives and future plans for the development of tropical-region-bred temperate japonica rice.


Author(s):  
Ю.Г. Пастернак ◽  
В.А. Пендюрин ◽  
К.С. Сафонов

Решение задачи связи в Арктике, а также в тундре, в тайге, в лесу, в море, на полях возможно только с использованием мобильных систем спутниковой связи. ФГУП «Космическая связь» (г. Москва) располагает группировкой спутников, которая постоянно расширяется. Для надежной связи в Арктике и в северных широтах, помимо геостационарных спутников, запущены спутники, движущиеся по высокоорбитальным траекториям. Для переключения со спутника на спутник, входящий в зону видимости абонента, необходимо использовать антенные решетки. Проблема заключается в том, что в настоящее время отсутствуют мобильные терминалы высокоскоростной спутниковой связи, а стоимость зарубежных аналогов препятствует широкому их использованию (достигает 50 тысяч долларов). Обычно радиолокационная связь (РЛС) с фазированной антенной решеткой используется для наблюдения за тысячами угловых точек, для отслеживания сотни целей. Такие требования могут быть выполнены только путем сканирования луча в пространстве в течение микросекунды. Ясно, что необходимо электронное управление лучом, поскольку механически вращать антенну не представляется возможным. Лишь некоторая часть вышеуказанных проблем будет затрагиваться в этой статье, ниже будут представлены электронная модель антенной решетки и её математическая модель The solution of the communication problem in the Arctic, as well as in the tundra, in the taiga, in the forest, in the sea, in the fields is possible only with the use of mobile satellite communication systems. FSUE "Space Communications" (Moscow) has a constantly expanding group of satellites. For reliable communication in the Arctic and Northern latitudes, in addition to geostationary satellites, satellites moving along high-orbit trajectories were launched. To switch from one satellite to the other included in the subscriber's visibility area, it is necessary to use antenna arrays. The problem is that currently there are no mobile terminals for high-speed satellite communication, and the cost of foreign analogues prevents their widespread use (up to 50 thousand dollars). Typically, a phased array radar is used to track thousands of corner points to track hundreds of targets. Such requirements can only be met by scanning the beam in space for a microsecond. It is clear, that electronic beam control is necessary since it is not possible to mechanically rotate the antenna. Only some of the above problems will be touched upon in this article. An electronic model of the antenna array and its mathematical model is presented


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1078 ◽  
Author(s):  
John Philip B ◽  
Sarat K Kotamraju ◽  
Ch Sri Kavya

Scintillation is the rapid fluctuation of the received signal. It is caused by the variation in the refractivity structure of the atmosphere profile. This phenomenon leads to the signal degradation and is significant in low fade margin links and at low elevation angles. So, analyzing the scintillation intensity and its statistics are vital for a system designer to design an efficient system for the satellite communication link. This paper presents the methodology to extract the scintillation intensity from the raw beacon signal and comparison of ITU-R scintillation prediction model with the measured results to test its acceptability over tropical region. When compared with measured results, ITU-R model overestimates the scintillation fade. Hence the parameters of the time percentage factor are modified to obtain near fit to the measured results.


Author(s):  
Teodor Narytnik ◽  
Vladimir Saiko

The technical aspects of the main promising projects in the segments of medium and low-orbit satellite communication systems are considered, as well as the project of the domestic low-orbit information and telecommunications system using the terahertz range, which is based on the use of satellite platforms of the micro- and nanosatellite class and the distribution of functional blocks of complex satellite payloads more high-end on multiple functionally related satellites. The proposed system of low-orbit satellite communications represents the groupings of low-orbit spacecraft (LEO-system) with the architecture of a "distributed satellite", which include the groupings of the root (leading) satellites and satellite repeaters (slaves). Root satellites are interconnected in a ring network by high-speed links between the satellites. The geometric size of the “distributed satellite” is the area around the root satellite with a radius of about 1 km. The combination of beams, which are formed by the repeater satellites, make up the service area of the LEO system. The requirements for the integrated service area of the LEO system (geographical service area) determine the requirements for the number of distributed satellites in the system as a whole. In the proposed system to reduce mutual interference between the grouping of the root (leading) satellites and repeater satellites (slaves) and, accordingly, minimizing distortions of the information signal when implementing inter-satellite communication, this line (radio channel) was created in an unlicensed frequency (e.g., in the terahertz 140 GHz) range. In addition, it additionally allows you to minimize the size of the antennas of such a broadband channel and simplify the operation of these satellite systems.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4705
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Juergen Czarske ◽  
...  

Due to their lightweight properties, fiber-reinforced composites are well suited for large and fast rotating structures, such as fan blades in turbomachines. To investigate rotor safety and performance, in situ measurements of the structural dynamic behaviour must be performed during rotating conditions. An approach to measuring spatially resolved vibration responses of a rotating structure with a non-contact, non-rotating sensor is investigated here. The resulting spectra can be assigned to specific locations on the structure and have similar properties to the spectra measured with co-rotating sensors, such as strain gauges. The sampling frequency is increased by performing consecutive measurements with a constant excitation function and varying time delays. The method allows for a paradigm shift to unambiguous identification of natural frequencies and mode shapes with arbitrary rotor shapes and excitation functions without the need for co-rotating sensors. Deflection measurements on a glass fiber-reinforced polymer disk were performed with a diffraction grating-based sensor system at 40 measurement points with an uncertainty below 15 μrad and a commercial triangulation sensor at 200 measurement points at surface speeds up to 300 m/s. A rotation-induced increase of two natural frequencies was measured, and their mode shapes were derived at the corresponding rotational speeds. A strain gauge was used for validation.


Sign in / Sign up

Export Citation Format

Share Document