scholarly journals Magnetic Circuit Analyses and Turning Chatter Suppression Based on a Squeeze-Mode Magnetorheological Damping Turning Tool

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yongliang Zhang ◽  
Norman M. Wereley ◽  
Wei Hu ◽  
Ming Hong ◽  
Wei Zhang

As a smart material, magnetorheological fluid (MRF) has been utilized in fields including civil engineering and automotive engineering, and so on. In this study, the MR damping turning tool based on the squeeze-mode was developed to improve the vibration resistance of the tool system on the lathe. The 3D magnetic circuit simulations of the damper were performed. The influences of damper structural parameters, such as coil positions, plate thicknesses, and others, on the magnetic induction strength were investigated. Orthogonal experiments were carried out and the optimal combination of damper parameters was determined. The chatter suppressive experiments were carried out to evaluate the performance of the MR damping turning tool.

2021 ◽  
Vol 37 (6) ◽  
pp. 1005-1014
Author(s):  
Guoliang Wei ◽  
Qingsong Zhang ◽  
Biao Wang ◽  
QingXi Liao

HighlightsThe seeder combined the plowing and rotating tillage to overcome the heavy soil and a large amount of straws.The plow could lift and turn the soil and straw before rotary tillage.The optimal working parameters of the seeder were obtained by orthogonal field experiments.Abstract. Rapeseed, one of the most important oil crops in China, is mainly planted in the mid-lower reaches of the Yangtze River. However, limited by the special long-term rice-rapeseed rotation, rotary tillage is applied in most of the planted areas apply instead of plow tillage, leading to a shallow arable layer. On the other hand, maintaining a high-quality seedbed for rapeseed becomes a challenge because a large amount of straw remains buried in the soil. As a solution, a rapeseed direct seeder that combines plow tillage and rotary tillage was designed. The structure of the plowing unit, whose key components were a lifting-turning plow and symmetrical plow, was analyzed based on the forming principle of the plow. Furthermore, a mechanical soil throwing model of the rotary tillage blade was built to determine the structural parameters. Then, the interaction between the rotary tillage unit and the lift-turning plow was analyzed. Finally, the performance and optimal parameters were evaluated by orthogonal field experiments. The seedbed after the operations indicated that the seeder could achieve the function of turning the soil and straw first and then rotating the soil with good passability, mixing the straw and the soil, flattening the surface of the seed bed, and stabilizing the tillage depth. Orthogonal experiments showed that the optimal working parameters of the seeder were as follows: the tillage depth was 180 mm, the equipment forward speed was 2.1 km/h, and the speed of the rotary tillage blade was 250 r/min. Under the optimal parameter combination, the power consumption of the seeder, the thickness of the tillage layer, the crop residue burial efficiency, the soil breakage efficiency, and the flatness of the seed bed surface were 30.48 kW, 231 mm, 90.88%, 93.26%, and 21.15 mm, respectively. The working performance of the seeder could meet the tillage requirements of rapeseed planting. Keywords: Direct seeder, Evaluation, Plow, Plowing-rotating combined tillage, Rapeseed.


2011 ◽  
Vol 291-294 ◽  
pp. 1069-1073
Author(s):  
Wen Bin Su ◽  
Xiang Bing Sun ◽  
Tao Li ◽  
Bao Jian Liu

Thickness thinning is the principal quality problem in the vacuum forming process of the refrigerator inner liner. In this paper, the structural parameters of refrigerator inner liner were analyzed based on orthogonal experiments and numerical simulation. Optimized structural parameters combination scheme and the significance level of structural parameters to thickness were obtained by analyzing the results of orthogonal experiments. Validation experiment results shown that the quality of refrigerator inner liner based on the optimized structural parameters combination scheme improved effectively.


2020 ◽  
Vol 31 (5) ◽  
pp. 687-703 ◽  
Author(s):  
Dan Zhao ◽  
Jianbin Zhao ◽  
Zhenghang Zhao ◽  
Yang Liu ◽  
Shaogang Liu ◽  
...  

The porous foam metal magnetorheological fluid damper has a broad application prospect in the field of vibration isolation of precision instruments with small damping force because it does not need complex dynamic seal structure. The traditional single-ring magnetic pole porous foam metal magnetorheological fluid damper has a small effective area for the magnetic core that affects the damper output range due to the geometric constraints of the coil and the low magnetic field utilization. Therefore, in order to increase the effective area ratio of the magnetic core, this article introduces the built-in multi-pole magnetic core into the porous metal magnetorheological fluid damper and integrates four axial wound fan-shaped magnetic poles on the magnetic core to improve the output performance of the damper. The magnetic circuit is analyzed based on Ohm’s law of magnetic circuit, and the mathematical model of damping force is established. Based on this, the important geometric parameters of the damper are determined. The finite element method is used to simulate the magnetic field of the damper, and the output performance of the damper is numerically simulated. The dynamic performance test system of the damper is set up to test the designed damper, and the test data and numerical simulation results are verified with each other. The results show that the damping force peak and dynamic regulation range of the damper designed in this article are higher than those of the traditional porous foam metal magnetorheological fluid damper with magnetic core, which effectively improves the mechanical properties of the magnetorheological fluid damper with porous foam metal.


2016 ◽  
Vol 28 (10) ◽  
pp. 1249-1259 ◽  
Author(s):  
Xiang-Fan Wu ◽  
Xing-Ming Xiao ◽  
Zu-Zhi Tian ◽  
Fei Chen ◽  
Jian Wang ◽  
...  

On the basis of shear working mode of magnetorheological fluid, in this article, a novel temperature controllable yield stress measurement device is designed, and the double magnetic circuit structure and the heating structure are proposed. And then, the magnetic field and temperature field of the measurement device are simulated, respectively, by the finite element method. Furthermore, several experiments are carried out to evaluate the magnetic field, measurement precision, and repeatability of the self-designed device. The results indicate that the proposed measurement device has uniform magnetic field distribution and controllable temperature and also has high yield stress testing accuracy and repeatability.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878340
Author(s):  
Lingzhu Gong ◽  
Xiaoxiang Yang ◽  
Kaibin Kong ◽  
Shuncong Zhong

To improve the product quality of self-lubricating spherical plain bearing, a new shape of the outer rings for spherical plain bearings was optimally designed based on virtual orthogonal experiments using finite element software ABAQUS. The depth inclined end wall, together with the length of annular wall, the depth of annular concavity, the outer ring thickness, and the edge radius were taken as the main structural parameters in the analysis. For the evaluation parameters, the maximum bearing clearance, the maximum contact pressure, the maximum extrusion load, and the maximum equivalent plastic strain were considered. The optimal structure parameter combination was identified based on the intuitive comprehensive balance analysis method. The simulation results demonstrated much improvement for the forming quality by using a new type of the outer ring, which was optimized by the virtual orthogonal experiments. The new type of the outer ring could be used to the forming process in assembling the spherical plain bearings.


2011 ◽  
Vol 189-193 ◽  
pp. 1498-1501
Author(s):  
Li Li Liang ◽  
D.G. Yang

The proportion of LED in the lighting area gradually increased. But its high price, the low luminous efficiency, reliability problems restricted its global application. Therefore, for reliability problems, design a thermal structure of 19.2W multi-chip on board aluminum plate LED. Enhance the reliability mainly by settle a piece of silicon between the aluminum plate and the chips. Analyze by finite element method and use the ANSYS simulation software, the simulation for the thermal field is performed. Identify the optimal combination of structural parameters by using the orthogonal experimental method. The maximum steady-state temperature is less than 53.69 °C. Analyze the thermal-structure coupling simulation of the optimization of the thermal structure and reach the maximum thermal stress of 144MPa. So we can say that heat stress in terms of the design is safe and reliable. Eventually arrive at a more ideal LED aluminum plate thermal structure.


2020 ◽  
Vol 15 (6) ◽  
pp. 865-871
Author(s):  
Leilei Liu ◽  
Jie Liu ◽  
Zuqing He ◽  
Huanle Liu ◽  
Chao Zhou ◽  
...  

There is no precedent for the application of rotary flow jetting tool in the drainage gas recovery under gas wells. Based on the motion principles of jet flow and vortex flow, this paper designs a downhole rotary flow jetting tool, and verifies the feasibility of the tool through fluid simulation. Next, an indoor experiment device was established for drainage gas recovery with rotary flow jetting tool by the principle of similarity, and the structural parameters of the tool were subject to multi-objective optimization through orthogonal experiments. The optimized tool can achieve ideal rotary flow height and discharge volume. The results show that the proposed rotary flow jetting tool can effectively separate gas from liquid, and produce a rotary flow. The optimal structural parameters were determined as follows: the pitch diameter of spiral body is 45mm, the throat pipe length is 247mm, the spiral angle is 55°-60°, the spiral wing width is 4-6mm, and the nozzle diameter is 15-25mm. In addition, the number of side holes of the throat pipe has little effect on the jetting effect.


2019 ◽  
Vol 30 (5) ◽  
pp. 764-777 ◽  
Author(s):  
Song-lin Nie ◽  
De-kui Xin ◽  
Hui Ji ◽  
Fang-long Yin

This article presents the design and multi-physics coupling analysis of a shear-valve-mode magnetorheological fluid damper with different piston configurations. The finite element model is built to study the effects of the shape of the piston slot and magnetism-insulators at both ends of the piston yoke on the performance of the magnetorheological damper. Particle swarm optimization and finite element simulation are combined to optimize the structural parameters of the magnetorheological damper. The influences of different piston configurations on the magnetic flux density in the working gap, the shear stress, the viscous stress, and the dynamic range are investigated. The simulation results reveal that the magnetorheological damper, in which the corners of the piston slot are chamfered and the edges of the magnetism-insulators are filleted, exhibits a better damping performance. Furthermore, magnetorheological dampers with and without magnetism-insulators are fabricated. The influences of control current, displacement, and velocity on the mechanical performance of the magnetorheological dampers are experimentally investigated, and the experiment results are in accordance with the theoretical derivation and finite element simulation results.


Sign in / Sign up

Export Citation Format

Share Document