scholarly journals Eosinophils Reduce Chronic Inflammation in Adipose Tissue by Secreting Th2 Cytokines and Promoting M2 Macrophages Polarization

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Yi Zhang ◽  
Peng Yang ◽  
Ran Cui ◽  
Manna Zhang ◽  
Hong Li ◽  
...  

Obesity is now recognized as a low-grade, chronic inflammatory disease that is linked to a myriad of disorders including cardiovascular diseases, type 2 diabetes, and liver diseases. Recently it is found that eosinophils accelerate alternative activation macrophage (AAM) polarization by secreting Th2 type cytokines such as interleukin-4 and interleukin-13, thereby reducing metainflammation in adipose tissue. In this review, we focused on the role of eosinophils in regulating metabolic homeostasis and obesity.

Author(s):  
Charmaine S. Tam ◽  
Leanne M. Redman

AbstractObesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).


2021 ◽  
pp. 1-27
Author(s):  
Zoi Michailidou ◽  
Mario Gomez-Salazar ◽  
Vasileia Ismini Alexaki

Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.


2014 ◽  
Vol 222 (3) ◽  
pp. R113-R127 ◽  
Author(s):  
Milos Mraz ◽  
Martin Haluzik

Adipose tissue (AT) lies at the crossroad of nutrition, metabolism, and immunity; AT inflammation was proposed as a central mechanism connecting obesity with its metabolic and vascular complications. Resident immune cells constitute the second largest AT cellular component after adipocytes and as such play important roles in the maintenance of AT homeostasis. Obesity-induced changes in their number and activity result in the activation of local and later systemic inflammatory response, marking the transition from simple adiposity to diseases such as type 2 diabetes mellitus, arterial hypertension, and ischemic heart disease. This review has focused on the various subsets of immune cells in AT and their role in the development of AT inflammation and obesity-induced insulin resistance.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 469-P
Author(s):  
MILOS MRAZ ◽  
ANNA CINKAJZLOVA ◽  
ZDENA LACINOVÁ ◽  
JANA KLOUCKOVA ◽  
HELENA KRATOCHVILOVA ◽  
...  

2009 ◽  
Vol 68 (4) ◽  
pp. 378-384 ◽  
Author(s):  
Henrike Sell ◽  
Jürgen Eckel

A strong causal link between increased adipose tissue mass and insulin resistance in tissues such as liver and skeletal muscle exists in obesity-related disorders such as type 2 diabetes. Increased adipose tissue mass in obese patients and patients with diabetes is associated with altered secretion of adipokines, which also includes chemotactic proteins. Adipose tissue releases a wide range of chemotactic proteins including many chemokines and chemerin, which are interesting targets for adipose tissue biology and for biomedical research in obesity and obesity-related diseases. This class of adipokines may be directly linked to a chronic state of low-grade inflammation and macrophage infiltration in adipose tissue, a concept intensively studied in adipose tissue biology in recent years. The inflammatory state of adipose tissue in obese patients may be the most important factor linking increased adipose tissue mass to insulin resistance. Furthermore, chemoattractant adipokines may play an important role in this situation, as many of these proteins possess biological activity beyond the recruitment of immune cells including effects on adipogenesis and glucose homeostasis in insulin-sensitive tissues. The present review provides a summary of experimental evidence of the role of adipose tissue-derived chemotactic cytokines and their function in insulin resistancein vivoandin vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alecia M. Blaszczak ◽  
Anahita Jalilvand ◽  
Willa A. Hsueh

The role of adipose tissue (AT) inflammation in obesity and its multiple related-complications is a rapidly expanding area of scientific interest. Within the last 30 years, the role of the adipocyte as an endocrine and immunologic cell has been progressively established. Like the macrophage, the adipocyte is capable of linking the innate and adaptive immune system through the secretion of adipokines and cytokines; exosome release of lipids, hormones, and microRNAs; and contact interaction with other immune cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells also play important roles in contributing to AT inflammation and are discussed in this series in the chapter on adaptive immunity.


2021 ◽  
Vol 11 (9) ◽  
pp. 544-549
Author(s):  
Paulina Trojanowska ◽  
Magdalena Chrościńska-Krawczyk ◽  
Alina Trojanowska ◽  
Ewa Tywanek ◽  
Jakub Wronecki ◽  
...  

Understanding the important role of the non-specific immune response in protecting the body against the development of numerous diseases has become partially possible after the discovery of several classes of pattern recognition receptors (PRR), such as Toll-like or NOD-like receptors. A group of cytoplasmic proteins called the inflammasome, which detect PAMP and DAMP through the PRR receptors, is able to activate pro-inflammatory cytokines and trigger an acute inflammatory reaction both in the extracellular and intracellular space. Low-grade systemic and local inflammation contributes to the development and progression of various conditions, including autoimmune and metabolic diseases, such as diabetes, metabolic syndrome and atherosclerosis, which until recently were not even considered inflammatory diseases. This review will discuss the role of innate immunity in the development of type 1 and type 2 diabetes, focusing on the role of specific innate immunity receptors and insulin resistance involved in these diseases pathogenesis.


2020 ◽  
Author(s):  
Ada Admin ◽  
Julia Braune ◽  
Andreas Lindhorst ◽  
Janine Fröba ◽  
Constance Hobusch ◽  
...  

Obesity is associated with a chronic low-grade inflammation in visceral adipose tissue (AT) characterized by an increasing number of adipose tissue macrophages (ATMs) and linked to type 2 diabetes. AT inflammation is histologically indicated by the formation of so-called crown-like structures (CLS), as accumulation of ATMs around dying adipocytes, and the occurrence of multi-nucleated giant cells (MGCs). However to date, the function of MGCs in obesity is unknown. Hence, the aim of this study was to characterize MGCs in AT and unravel the function of these cells. <p>We demonstrate that MGCs occur in obese patients and after 24 weeks of high fat diet (HFD) in mice, accompanying signs of AT inflammation and then represent ~3% of ATMs in mice. Mechanistically, we found evidence that adipocyte death triggers MGC formation. Most importantly, MGCs in obese AT have a higher capacity to phagocytose oversized particles, such as adipocytes, as shown by live-imaging of AT, 45 µm bead uptake <i>ex vivo</i> and a higher lipid content <i>in vivo</i>. Finally, we show that IL-4 treatment is sufficient to increase the number of MGCs in AT, whereas other factors maybe more important for endogenous MGC formation <i>in vivo</i>.</p>


2009 ◽  
Vol 55 (5) ◽  
pp. 43-48 ◽  
Author(s):  
V Shvarts

This review deals with the role of adipose tissue inflammation (ATI) in the development of type 2 diabetes mellitus (DM2). ATI is regarded as a link between obesity and DM2. The review illustrates the involvement of main adipokines in pathogenesis of DM2 and provides a detailed description of such factors as impaired adiponectin and stimulation of cytokine production responsible for metabolic disorders, activation of lipolysis, in adipocytes, increased fatty acid and triglyceride levels, suppression of insulin activity at the receptor and intracellular levels. Adipokines, in the first place cytokines, act on the insulin signal pathway and affect the intracellular inflammatory kinase cascade. At the intercellular level, ATI stimulates JNK and IKK-beta/kB responsible for the development of insulin resistance via such mechanisms as activation of cytokine secretion in the adipose tissue, oxidative stress, and induction of endoplasmic reticulum enzymes. The key role of JNK and IKK-beta/kB in the inhibition of the insulin signal pathway is mediated through inactivation of insulin receptor substrate 1. Also, it is shown that ATI modulates B-cell function and promotes progressive reduction of insulin secretion.


Endocrinology ◽  
2007 ◽  
Vol 149 (3) ◽  
pp. 1350-1357 ◽  
Author(s):  
Florian W. Kiefer ◽  
Maximilian Zeyda ◽  
Jelena Todoric ◽  
Joakim Huber ◽  
René Geyeregger ◽  
...  

Obesity is associated with a chronic low-grade inflammation characterized by macrophage infiltration of adipose tissue (AT) that may underlie the development of insulin resistance and type 2 diabetes. Osteopontin (OPN) is a multifunctional protein involved in various inflammatory processes, cell migration, and tissue remodeling. Because these processes occur in the AT of obese patients, we studied in detail the regulation of OPN expression in human and murine obesity. The study included 20 morbidly obese patients and 20 age- and sex-matched control subjects, as well as two models (diet-induced and genetic) of murine obesity. In high-fat diet-induced and genetically obese mice, OPN expression was drastically up-regulated in AT (40 and 80-fold, respectively) but remained largely unaltered in liver (&lt;2-fold). Moreover, OPN plasma concentrations remained unchanged in both murine models of obesity, suggesting a particular local but not systemic importance for OPN. OPN expression was strongly elevated also in the AT of obese patients compared with lean subjects in both omental and sc AT. In addition, we detected three OPN isoforms to be expressed in human AT and, strikingly, an obesity induced alteration of the OPN isoform expression pattern. Analysis of AT cellular fractions revealed that OPN is exceptionally highly expressed in AT macrophages in humans and mice. Moreover, OPN expression in AT macrophages was strongly up-regulated by obesity. In conclusion, our data point toward a specific local role of OPN in obese AT. Therefore, OPN could be a critical regulator in obesity induced AT inflammation and insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document