scholarly journals Sensitivity Analysis of Transonic Flow over J-78 Wings

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Alexander Kuzmin

3D transonic flow over swept and unswept wings with an J-78 airfoil at spanwise sections is studied numerically at negative and vanishing angles of attack. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver on unstructured meshes. The numerical simulation shows that adverse Mach numbers, at which the lift coefficient is highly sensitive to small perturbations, are larger than those obtained earlier for 2D flow. Due to the larger Mach numbers, there is an onset of self-exciting oscillations of shock waves on the wings. The swept wing exhibits a higher sensitivity to variations of the Mach number than the unswept one.

2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Alexander Kuzmin

AbstractTransonic flow past a Whitcomb airfoil and two modifications of it at Reynolds numbers of the order of ten millions is studied. The numerical modeling is based on the system of Reynolds-averaged Navier-Stokes equations. The flow simulations show that variations of the lift coefficient versus the angle of attack become more abrupt with decreasing curvature of the airfoil in the midchord region. This is caused by an instability of closely spaced local supersonic regions on the upper surface of the airfoil.


2014 ◽  
Vol 118 (1202) ◽  
pp. 425-433 ◽  
Author(s):  
A. Kuzmin ◽  
A. Ryabinin

Abstract Transonic flow past a Boeing 737 Outboard aerofoil and Whitcomb one with a defected aileron is studied. The flow simulation is based on the system of Reynolds-averaged Navier-Stokes equations. The numerical study demonstrates the existence of free-stream conditions in which small perturbations produce abrupt changes of the lift coefficient. Also the simulation reveals adverse conditions in which aileron deflections have no influence on the lift.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Author(s):  
Kazuomi Yamamoto ◽  
Yoshimichi Tanida

A self-excited oscillation of transonic flow in a simplified cascade model was investigated experimentally, theoretically and numerically. The measurements of the shock wave and wake motions, and unsteady static pressure field predict a closed loop mechanism, in which the pressure disturbance, that is generated by the oscillation of boundary layer separation, propagates upstream in the main flow and forces the shock wave to oscillate, and then the shock oscillation disturbs the boundary layer separation again. A one-dimensional analysis confirms that the self-excited oscillation occurs in the proposed mechanism. Finally, a numerical simulation of the Navier-Stokes equations reveals the unsteady flow structure of the reversed flow region around the trailing edge, which induces the large flow separation to bring about the anti-phase oscillation.


1983 ◽  
Vol 50 (2) ◽  
pp. 265-269
Author(s):  
D. Nixon

The perturbation theory for transonic flow is further developed for solutions of the Navier-Stokes equations in two dimensions or for experimental results. The strained coordinate technique is used to treat changes in location of any shock waves or large gradients.


2020 ◽  
Vol 310 ◽  
pp. 00044
Author(s):  
Juraj Mužík

The paper presents the use of the dual reciprocity multidomain singular boundary method (SBMDR) for the solution of the laminar viscous flow problem described by Navier-Stokes equations. A homogeneous part of the solution is solved using a singular boundary method with the 2D Stokes fundamental solution - Stokeslet. The dual reciprocity approach has been chosen because it is ideal for the treatment of the nonhomogeneous and nonlinear terms of Navier-Stokes equations. The presented SBMDR approach to the solution of the 2D flow problem is demonstrated on a standard benchmark problem - lid-driven cavity.


2021 ◽  
Author(s):  
Chen Li ◽  
Peiting Sun ◽  
Hongming Wang

The leading-edge bulges along the extension direction are designed on the marine wingsail. The height and the spanwise wavelength of the protuberances are 0.1c and 0.25c, respectively. At Reynolds number Re=5×105, the Reynolds Averaged Navier-Stokes equations are applied to the simulation of the wingsail with the bulges thanks to ANSYS Fluent finite-volume solver based on the SST K-ω models. The grid independence analysis is carried out with the lift and drag coefficients of the wingsail at AOA = 8° and AOA=20°. The results show that while the efficiency of the wingsail is reduced by devising the leading-edge bulges before stall, the bulges help to improve the lift coefficient of the wingsail when stalling. At AOA=22° under the action of the leading-edge tubercles, a convective vortex is formed on the suction surface of the modified wingsail, which reduces the flow loss. So the bulges of the wingsail can delay the stall.


2021 ◽  
Vol 929 ◽  
Author(s):  
Ravi Sudam Jadhav ◽  
Abhimanyu Gavasane ◽  
Amit Agrawal

The main goal of the present study is to thoroughly test the recently derived OBurnett equations for the normal shock wave flow problem for a wide range of Mach number ( $3 \leq Ma \leq 9$ ). A dilute gas system composed of hard-sphere molecules is considered and the numerical results of the OBurnett equations are validated against in-house results from the direct simulation Monte Carlo method. The primary focus is to study the orbital structures in the phase space (velocity–temperature plane) and the variation of hydrodynamic fields across the shock. From the orbital structures, we observe that the heteroclinic trajectory exists for the OBurnett equations for all the Mach numbers considered, unlike the conventional Burnett equations. The thermodynamic consistency of the equations is also established by showing positive entropy generation across the shock. Further, the equations give smooth shock structures at all Mach numbers and significantly improve upon the results of the Navier–Stokes equations. With no tweaking of the equations in any way, the present work makes two important contributions by putting forward an improved theory of shock waves and establishing the validity of the OBurnett equations for solving complex flow problems.


Author(s):  
S. Moreau ◽  
S. Aubert ◽  
G. Grondin ◽  
P. Ferrand

The parameterized CFD solver Turb’Opty™, based on a Taylor series expansion to high order derivatives of the solution of the discretized Navier-Stokes equations, has been successfully applied to the full geometric and flow parameterization of an engine cooling fan blade cascade. The coupling of a recently developed genetic algorithm and the post-processor Turb’Post™ has also yielded a multi-objective optimization of the original Valeo airfoil. A representative geometry of the Pareto front has then been prototyped and tested. Significant improvement of the lift coefficient has been obtained at all incidences. Comparisons with direct Turb’Flow™ cascade results have validated the accuracy of the parameterized solutions and shown the same trend as the free-jet measurements.


Sign in / Sign up

Export Citation Format

Share Document