scholarly journals Competitive and Noncompetitive Batch Sorption Studies of Aqueous Cd(II) and Pb(II) Uptake ontoCoffea canephoraHusks,Cyperus papyrusStems, andMusaspp. Peels

2015 ◽  
Vol 2015 ◽  
pp. 1-17
Author(s):  
G. K. Bakyayita ◽  
A. C. Norrström ◽  
R. N. Kulabako

Coffea canephora,Cyperus papyrus,andMusaspp. were studied for competitive and noncompetitive removal of aqueous Cd2+and Pb2+. The optimal conditions were pH 4.5 and agitation time 3.0 hours. Biomass constituent ions showed no interference effects whereas cation exchange capacity values corresponded to the sorption efficiencies. XRD spectroscopy revealed surface oxygen and nitrogen groups that provide binding sites for metal ions. The maximum sorption efficiency ranges for metal ions in noncompetitive media were 95.2–98.7% forC. canephora, 42.0–91.3% forC. papyrus,and 79.9–92.2% forMusaspp. and in competitive sorption 90.8–98.0% forC. canephora, 19.5–90.4% forC. papyrus,and 56.4–89.3% forMusaspp. The Pb2+ions uptake was superior to that of Cd2+ions in competitive and noncompetitive media. In competitive sorption synergistic effects were higher for Cd2+than Pb2+ions. The pseudo-second-order kinetic model fitted experimental data with0.917≤R2≥1.000for Pb2+ions and0.711≤R2≥0.999for Cd2+ions. The Langmuir model fitted noncompetitive sorption data with0.769≤R2≥0.999; moreover the Freundlich model fitted competitive sorption data with0.867≤R2≥0.989. Noncompetitive sorption was monolayer chemisorption whereas competitive sorption exhibited heterogeneous sorption mechanisms.

2011 ◽  
Vol 63 (10) ◽  
pp. 2114-2122 ◽  
Author(s):  
Lei Zhang ◽  
Qing Lin ◽  
Xingjia Guo ◽  
Francis Verpoort

Florisil was employed for the sorption of antimony ions from aqueous solutions. A detailed study of the process was performed by varying the sorption time, pH, and temperature. The sorption was found to be fast, equilibrium was reached within 15 min. Moreover, a maximum sorption has been achieved from solution when the pH ranges between 1–10. From kinetic experiments it follows that the process correlate with the second-order kinetic model. The overall rate process appears to be influenced by both boundary layer diffusion and intra-particle diffusion. The Langmuir and Dubinin-Radushkevich (D-R) type sorption isotherms can be applied to fit and interpret the sorption data. The mean energy of adsorption (9.73 kJ mol−1) was calculated from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. Furthermore, the thermodynamic parameters for the sorption were also determined, and the ΔH0 and ΔG0 values indicate a spontaneous endothermic behavior.


Author(s):  
D. M. Sánchez Nava ◽  
H. López González ◽  
M. T. Olguín ◽  
S. Bulbulian

In this work, the removal of nickel from aqueous solutions by Agave salmiana was investigated. For this purpose the removal of this heavy metal (Ni2+) was carried out in a batch system as a function of contact time, pH, and the initial concentration of the metallic specie in solution. The sorption data were fitted to pseudo-first order and pseudo-second order kinetic models to found the parameteres which describe the processes. It was found that the maximum sorption of the Agave for Ni2+ was at pH 10 and pseudo-second order kinetic model well described the biosorption behavior of this heavy metal by the non-living biomass. Furthermore, the maximum sorption capacity obtained from the isotherm was 10 mgNi/gAgave.


2018 ◽  
Vol 69 (9) ◽  
pp. 2323-2330 ◽  
Author(s):  
Daniela C. Culita ◽  
Claudia Maria Simonescu ◽  
Rodica Elena Patescu ◽  
Nicolae Stanica

A series of three chitosan-based magnetic composites was prepared through a simple coprecipitation method. It was investigated the influence of mass ratio between chitosan and magnetite on the physical and chemical properties of the composites in order to establish the optimum conditions for obtaining a composite with good adsorption capacity for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions. It was found that the microspheres prepared using mass ratio chitosan / magnetite 1.25/1, having a saturation magnetization of 15 emu g--1, are the best to be used as adsorbent for the metal ions. The influence of different parameters such as initial pH values, contact time, initial concentration of metal ions, on the adsorption of Pb(II) and Cu(II) onto the chitosan-based magnetic adsorbent was investigated in details. The adsorption process fits the pseudo-second-order kinetic model in both mono and bicomponent systems, and the maximum adsorption capacities calculated on the basis of the Langmuir model were 79.4 mg g--1 for Pb(II) and 48.5 mg g--1 for Cu(II) in monocomponent systems, while in bicomponent systems were 88.3 and 49.5 mg g--1, respectively. The results revealed that the as prepared chitosan-based magnetic adsorbent can be an effective and promising adsorbent for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ > Cd2+ > Zn2+ > Cu2+ > Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


2018 ◽  
Vol 21 (8) ◽  
pp. 583-593 ◽  
Author(s):  
Sara Rahnama ◽  
Shahab Shariati ◽  
Faten Divsar

Objective: In this research, a novel magnetite titanium dioxide nanocomposite functionalized by amine groups (Fe3O4@SiO2@TiO2-NH2) was synthesized and its ability for efficient removal of Acid Fuchsine as an anionic dye from aqueous solutions was investigated. Method: The core-shell structure of Fe3O4@SiO2@TiO2 was prepared using Fe3O4 as magnetic core, tetra ethyl orthosilicate as silica and tetra butyl titanate as titanium source for shell. The synthesized nanocomposites (particle size lower than 44 nm) were characterized by FT-IR, XRD, DRS, SEM and TGA instruments. The various experimental parameters affecting dye removal efficiency were investigated and optimized using Taguchi fractional factorial design. Results: The synthesized adsorbent showed the highest removal efficiency of Acid Fuchsine (99 %) at pH= 3.5, without salt addition and during stirring at contact times less than 10 minutes. The study of kinetic models at two concentration levels showed the fast dye sorption on the surface of proposed nanocomposites with pseudo second order kinetic model (R2=1). Also, the fitting of Acid Fuchsine sorption data to Freundlich, Langmuir and Temkin isotherms suggested that Freundlich model gave a better fitting than other models (R2=0.9936, n=2). Conclusion: Good chemical stability, excellent magnetic properties, very fast adsorption kinetics and high removal efficiency make the synthesized nanocomposite as a proper recoverable sorbent for removal of Acid Fuchsine dye from wastewaters.


2011 ◽  
Vol 6 (3) ◽  
pp. 155892501100600 ◽  
Author(s):  
Fang Li ◽  
Chunmei Ding

Different degree of deacetylation (DD) chitosan was prepared and used for the removal of a Reactive black M-2R (RBM) from aqueous solution. The effects of temperature (298 K~323 K), chitosan dosage, degree of deacetylation on RBM removal were investigated. The adsorption equilibrium was reached within one hour. In order to determine the adsorption capacity, the sorption data were analyzed by using linear form of Langmuir, Freundlich and Tempkin isotherm equation. Langmuir equation shows higher conformity than the other two equations. From the kinetic experiment data, it was found that the sorption process follows the pseudo-second-order kinetic model. Activation energy value for sorption process was found to be 58.28 kJ mol-1. Chitosan with 66% deacetylation degree (DD) exhibited good adsorption performance for RBM. In order to determine the interactions between RBM and chitosan, FTIR analysis was also conducted.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2019 ◽  
Vol 233 (2) ◽  
pp. 201-223 ◽  
Author(s):  
Khalida Naseem ◽  
Rahila Huma ◽  
Aiman Shahbaz ◽  
Jawaria Jamal ◽  
Muhammad Zia Ur Rehman ◽  
...  

Abstract This study describes the adsorption of Cu (II), Co (II) and Ni (II) ions from wastewater on Vigna radiata husk biomass. The ability of adsorbent to capture the metal ions has been found to be in the order of Ni (II)>Co (II) and Cu (II) depending upon the size and nature of metal ions to be adsorbed. It has been observed that percentage removal of Cu (II), Co (II) and Ni (II) ions increases with increase of adsorbent dosage, contact time and pH of the medium but up to a certain extent. Maximum adsorption capacity (qmax) for Cu (II), Co (II) and Ni (II) ions has been found to be 11.05, 15.04 and 19.88 mg/g, respectively, under optimum conditions of adsorbent dosage, contact time and pH of the medium. Langmuir model best fits the adsorption process with R2 value approaches to unity for all metal ions as compared to other models because adsorption sites are seemed to be equivalent and only monolayer adsorption may occur as a result of binding of metal ion with a functional moiety of adsorbent. Pseudo second order kinetic model best interprets the adsorption process of Cu (II), Co (II) and Ni (II) ions. Thermodynamic parameters such as negative value of Gibbs energy (∆G°) gives information about feasibility and spontaneity of the process. Adsorption process was found to be endothermic for Cu (II) ions while exothermic for Co (II) and Ni (II) ions as signified by the value of enthalpy change (∆H°). Husk biomass was recycled three times for removal of Ni (II) from aqueous medium to investigate its recoverability and reusability. Moreover V. radiata husk biomass has a potential to extract Cu (II) and Ni (II) from electroplating wastewater to overcome the industrial waste water pollution.


2015 ◽  
Vol 17 (3) ◽  
pp. 498-507 ◽  

<div> <p>In this study, Kandira stone, extensively used as a cladding material for building stone has been examined for the removal of an antibiotic Ciprofloxacin hydrochloride (CIP) from its aqueous solution. Batch experiments were performed to investigate the adsorption kinetics, equilibrium and thermodynamics between the adsorbent surfaces and CIP. The sorption data follows Freundlich isotherm. A chemical adsorption was dominant. The adsorption behaviour of CIP onto Kandira stone followed the pseudo-second-order kinetic model, indicating that the adsorption process can be expressed with the chemisorption mechanism. The intraparticle diffusion process is a rate-controlling step. The adsorption thermodynamic parameters of the free energy change (∆G<sup>o</sup>), the isosteric enthalpy change (∆H<sup>o</sup>) and the entropy change (∆S<sup>o</sup>) were calculated. The negative ∆H<sup>o</sup> values indicated that sorption of CIP was the exothermic process. The positive value of ∆G<sup>o</sup> indicates non-spontaneous nature of CIP adsorption.&nbsp;</p> </div> <p>&nbsp;</p>


2021 ◽  
Vol 9 (1) ◽  
pp. 53-62
Author(s):  
Lucia Remenárová ◽  
Martin Pipíška ◽  
Miroslav Horník ◽  
Jozef Augustín

With the aim to investigate sorption properties of natural sorbent prepared from moss Rhytidiadelphus squarrosus we elucidated biosorption of cationic dyes Malachite green (BG4), Auramine O (BY2) and Thioflavine T (BY1) from aqueous solutions. The removal of dyes by moss biosorbent was found to be rapid at an initial stage and the equilibrium was reached within 1-2 hours. The pseudo-n-order kinetic model was successfully applied to the kinetic data and the order of adsorption reaction was calculated in the range from 1.7 to 2.6. The value of rate constant kn' ranged from 0.001 to 0.039 [min-1]/[μmol/g]1-n. The equilibrium data were fitted to the adsorption isotherms. The Freundlich isotherm was found to represent the measured sorption data of BG4, BY1 and BY2 well. The maximum sorption capacities of moss biomass from single dye solutions calculated by Langmuir equation were 354 μmol/g for BG4, 310 μmol/g for BY1 and 382 μmol/g for BY2. These results showed that the prepared biomass presents low-cost, natural and easy available sorbent which may be potentially used for removal of dyes from environment and also may be an alternative to more costly materials such as activated carbon.


Sign in / Sign up

Export Citation Format

Share Document