scholarly journals Moringa oleiferaFlower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Woan Sean Tan ◽  
Palanisamy Arulselvan ◽  
Govindarajan Karthivashan ◽  
Sharida Fakurazi

Aim of Study.Moringa oleiferaLam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract ofM. oleiferaflower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages.Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting.Results. Hydroethanolic extract ofM. oleiferaflower significantly suppressed the secretion and expression of NO, prostaglandin E2(PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α(inhibitor ofκB) in a concentration dependent manner (100 μg/mL and 200 μg/mL).Conclusion. These results suggest that 80% hydroethanolic extract ofM. oleiferaflower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator’s production in LPS-stimulated macrophages through preventing degradation of IκB-αin NF-κB signaling pathway.

2021 ◽  
Vol 32 (1) ◽  
pp. 143-160
Author(s):  
Nur Nadiah Zakaria ◽  
◽  
Masnindah Malahubban ◽  
Sharida Fakurazi ◽  
Sie Chuong Wong ◽  
...  

Mud lobsters are crustaceans from the genus Thalassina which are lesser known and seldom seen but are nevertheless an important organism to the mangrove ecosystem. In Malaysia and Thailand, mud lobsters are eaten by locals as treatment for asthma. It is traditionally believed that they are effective in reducing the number of asthma attacks and severity of asthma symptoms. However, the therapeutic potential of mud lobster extract remains unclear and has not been fully elucidated or reported in any scientific study. The objectives of this study are to investigate the anti-inflammatory potential of mud lobster, Thalassina anomala extracts (hexane, chloroform and methanol) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, and to identify the potential bioactive compounds involved. An MTT assay was performed to determine the cytotoxicity of the T. anomala extracts on RAW 264.7 macrophages. Nitrite quantification assay and enzyme-linked immunosorbent assay (ELISA) were conducted to investigate the ability of the T. anomala extracts to suppress the secretion and expression of nitric oxide (NO), Prostaglandin E2 (PGE2) and proinflammatory cytokines (TNF-α, IL-6 and IL-1β) in LPS-stimulated macrophages. GC-MS analysis was done to identify putative metabolites. The hexane extract of T. anomala showed anti-inflammatory activity by significantly inhibiting the LPS-induced production of NO, PGE2, interleukin- (IL-) 6, IL-1β and tumour necrosis factor-alpha (TNF-α) in a concentration-dependent manner. Hexane extract treatment with 100 μg/mL has decreased the NO secretion into 37 μM. Meanwhile, hexane extract at concentration of 100 μg/mL able to significantly suppressed PGE2,TNF-α, IL-6 and IL-1β production into 2015 pg/mL, 2406 pg/mL, 460 pg/mL and 9.6 pg/mL, respectively. GC-MS analysis of the hexane extract revealed the presence of 19 putative compounds. The identified compounds were reported to have anti-inflammatory, antioxidant and antibacterial activities. These results suggest that the hexane extract of T. anomala potentially has anti-inflammatory properties and concentration dependently suppressed NO, PGE2 and proinflammatory cytokines’ production in LPS-stimulated macrophages. The findings provide a rational basis of the traditional use of mud lobster for inflammation-associated ailments.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Eun-Jin Yang ◽  
Young Min Ham ◽  
Kyong-Wol Yang ◽  
Nam Ho Lee ◽  
Chang-Gu Hyun

During our ongoing screening program designed to determine the anti-inflammatory potential of natural compounds, we isolated sargachromenol fromSargassum micracanthum. In the present study, we investigated the anti-inflammatory effects of sargachromenol on lipopolysaccharide (LPS)-induced inflammation in murine RAW 264.7 macrophage cells and the underlying mechanisms. Sargachromenol significantly inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2(PGE2) in a dose-dependent manner. It also significantly inhibited the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner in LPS-stimulated macrophage cells. Further analyses showed that sargachromenol decreased the cytoplasmic loss of inhibitorκBα(IκBα) protein. These results suggest that sargachromenol may exert its anti-inflammatory effects on LPS-stimulated macrophage cells by inhibiting the activation of the NF-κB signaling pathway. In conclusion, to our knowledge, this is the first study to show that sargachromenol isolated fromS. micracanthumhas an effective anti-inflammatory activity. Therefore, sargachromenol might be useful for cosmetic, food, or medical applications requiring anti-inflammatory properties.


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095366
Author(s):  
Yun-Hee Rhee ◽  
Ye Kyu Park ◽  
Jong-Soo Kim

The aim of this study was to investigate the anti-inflammatory properties of Pandanus conoideus Lamk (red fruit oil [RFO]) and establish the signal pathway of the leading compounds. RAW 264.7 murine macrophage cells were used with lipopolysaccharide (LPS). Cell viability and the pro-inflammatory factors were investigated using MTT assay, real-time polymerase chain reaction (PCR), western blot analysis, and enzyme-linked immunosorbent assay. The quantification of leading compounds in RFO was performed using high-performance liquid chromatography (HPLC). RFO did not reduce RAW 264.7 cell viability. RFO significantly reduced the production of nitric oxide (NO), cyclooxygenase-2, and prostaglandin E2, and both the protein level and mRNA level of inducible NO synthase in LPS-induced macrophages. RFO also regulated the reactive oxygen species (ROS) in LPS-induced macrophages. RFO attenuated the translocation of the nuclear factor κB (NF-κB) p65 subunit, phosphorylation of I-κB, p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. HPLC analysis determined that 1 g of RFO had 14.05 ± 0.8 mg of β-cryptoxanthin and 7.4 ± 0.7 mg of β-carotene. In conclusion, RFO provides an anti-inflammatory effect by regulating ROS and NF-κB through mitogen-activated protein kinase due to antioxidant activity.


2020 ◽  
Vol 19 (9) ◽  
pp. 1857-1862
Author(s):  
Ji Yun Yeo ◽  
Kwang Woo Hwang ◽  
So-Young Park

Purpose: To investigate the potential anti-inflammatory effects of the seeds of Opuntina humifusa and its active constituents.Methods: The extract of O. humifusa seeds was tested for the inhibition of nitric oxide (NO) production in liposaccharide (LPS)-stimulated RAW 264.7 cells using Griess reagent. The active constituents were isolated using bioassay-guided isolation methods. The effects of the active constituent on NO, proinflammatory cytokines, nuclear factor-kappa B (NF-κB) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) were evaluated by enzyme-linked immunosorbent assay (ELISA) and western blot analysis.Results: The seed extract of O. humifusa significantly attenuated LPS-induced NO production in RAW 264.7 cells (p < 0.05). Bioassay-guided fractionation resulted in the isolation of isoamericanin A as an active constituent. Isoamericanin A reduced LPS-induced production of NO, iNOS, and proinflammatory cytokines (TNF-α and IL-6) in a concentration-dependent manner (p < 0.05). Furthermore, the effect was accompanied by decreased translocation of NF-κB from the cytosol to the nucleus and the decreased phosphorylation of IκB in the cytosol induced by LPS (p < 0.05).Conclusion: The seed extract of O. humifusa and its active constituent, isoamericanin A, have antiinflammatory effects in LPS-stimulated RAW 264.7 cells, suggesting that they have potentials as antiinflammatory agents. Keywords: Opuntia humifusa seeds, Isoamericanin A, Nitric oxide, RAW 264.7 cells, NF-kappa B


2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2092048 ◽  
Author(s):  
Hyun-Kyu Kang ◽  
Chang-Gu Hyun

Recently, additional therapeutic potentials of classical antibiotics are gaining considerable attention. The discovery of penicillin in the 1920s had a major impact on the history of human health. Penicillin has been used for the treatment for fatal microbial infections in humans and has led to the discovery of several new antibiotics. d-(+)-Cycloserine (DCS) is an antibiotic isolated from Streptomyces orchidaceous and is used in conjunction with other drugs in the treatment of tuberculosis. However, there have been no studies on the anti-inflammatory effects of DCS in RAW 264.7 macrophage cell line. To investigate the anti-inflammatory effects of DCS, we examined the ability of DCS to inhibit the inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in this study. Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were pretreated with various concentrations (2, 4, and 6 mM) of DCS, then treated with 1 μg/mL LPS to detect its anti-inflammatory effects. d-(+)-Cycloserine inhibited the production of nitric oxide (NO) in a concentration-dependent manner, and to some extent, inhibited the production of prostaglandin E2. Consistent with these findings, DCS suppressed the expression of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-6. However, it had no effect on the expression of tumor necrosis factor-α. Western blot analysis demonstrated that DCS inhibited inducible nitric oxide synthase and suppressed cyclooxygenase type-2 (COX-2) expression. In addition, investigation of its effects on nuclear factor kappa B signaling showed that DCS inhibited phosphorylation of inhibitory kappa B-α (IκB-α) and increased intracellular IκB-α in a concentration-dependent manner. Furthermore, DCS inhibited the phosphorylation of LPS-induced extracellular signal-regulated kinase, however it did not affect phosphorylation of c-jun N-terminal kinase and p38. Further studies confirmed that the inhibition of phosphorylation of IκB-α was mediated through the inhibition of phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. To determine the applicability of DCS to the skin, cytotoxicity on HaCaT keratinocytes was measured following treatment with various concentrations (2, 4, 6, 8, and 10 mM) of DCS using MTT assay. These results suggest that DCS may be used as a potential drug for the treatment of inflammatory diseases.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Sang-Rim Kang ◽  
Dae-Yong Han ◽  
Kwang-Il Park ◽  
Hyeon-Soo Park ◽  
Yong-Bae Cho ◽  
...  

Citrus fruits have been used as an edible fruit and a traditional medicine since ancient times. In particular, the peels of immature citrus fruits are used widely in traditional herbal medicine in Korea, as they are believed to contain bioactive components exerting anti-inflammatory activity. This study examined whether the crude methanol extract ofCitrus aurantium L.(CME) has a suppressive effect on inducible enzymes and proinflammatory cytokines by inhibiting the NF-κB pathway in LPS-stimulated macrophage RAW 264.7 cells. The cells were pretreated with the indicated concentrations of CME (5, 10, 20, and 50 μg/mL) and then treated with LPS (1 μg/mL). The results showed that CME (10, 20, and 50 μg/mL) inhibited the LPS- (1 μg/mL) induced mRNA and protein expression of iNOS in macrophage Raw 264.7 cells. In addition, the expression of COX-2 was inhibited at the mRNA and protein levels by CME in a dose-dependent manner. The mRNA expression of proinflammatory cytokines, such as TNF-αand IL-6, were markedly reduced by CME (10, 20, and 50 μg/mL). Moreover, CME clearly suppressed the nuclear translocation of the NF-κB p65 subunits, which was correlated with its inhibitory effect on I-κB phosphorylation. These results suggest that CME has anti-inflammatory properties by modulating the expression of COX-2, iNOS, and proinflammatory cytokines, such as TNF-αand IL-6, in macrophage RAW 264.7 cells via the NF-κB pathway.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 2
Author(s):  
Gina De La Fuente ◽  
Marco Fontana ◽  
Valentina Asnaghi ◽  
Mariachiara Chiantore ◽  
Serena Mirata ◽  
...  

Inflammation and oxidative stress are part of the complex biological responses of body tissues to harmful stimuli. In recent years, due to the increased understanding that oxidative stress is implicated in several diseases, pharmaceutical industries have invested in the research and development of new antioxidant compounds, especially from marine environment sources. Marine seaweeds have shown the presence of many bioactive secondary metabolites, with great potentialities from both the nutraceutical and the biomedical point of view. In this study, 50%-ethanolic and DMSO extracts from the species C. amentacea var. stricta were obtained for the first time from seaweeds collected in the Ligurian Sea (north-western Mediterranean). The bioactive properties of these extracts were then investigated, in terms of quantification of specific antioxidant activities by relevant ROS scavenging spectrophotometric tests, and of anti-inflammatory properties in LPS-stimulated macrophages by evaluation of inhibition of inflammatory cytokines and mediators. The data obtained in this study demonstrate a strong anti-inflammatory effect of both C. amentacea extracts (DMSO and ethanolic). The extracts showed a very low grade of toxicity on RAW 264.7 macrophages and L929 fibroblasts and a plethora of antioxidant and anti-inflammatory effects that were for the first time thoroughly investigated. The two extracts were able to scavenge OH and NO radicals (OH EC50 between 392 and 454 μg/mL; NO EC50 between 546 and 1293 μg/mL), to partially rescue H2O2-induced RAW 264.7 macrophages cell death, to abate intracellular ROS production in H2O2-stimulated macrophages and fibroblasts and to strongly inhibit LPS-induced inflammatory mediators, such as NO production and IL-1α, IL-6, cyclooxygenase-2 and inducible NO synthase gene expression in RAW 264.7 macrophages. These results pave the way, for the future use of C. amentacea metabolites, as an example, as antioxidant food additives in antiaging formulations as well as in cosmetic lenitive lotions for inflamed and/or damaged skin.


Antioxidants ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 184 ◽  
Author(s):  
Fatiha Brahmi ◽  
Thomas Nury ◽  
Meryam Debbabi ◽  
Samia Hadj-Ahmed ◽  
Amira Zarrouk ◽  
...  

The present study consisted in evaluating the antioxidant, anti-inflammatory and cytoprotective properties of ethanolic extracts from three mint species (Mentha spicata L. (MS), Mentha pulegium L. (MP) and Mentha rotundifolia (L.) Huds (MR)) with biochemical methods on murine RAW 264.7 macrophages (a transformed macrophage cell line isolated from ascites of BALB/c mice infected by the Abelson leukemia virus). The total phenolic, flavonoid and carotenoid contents were determined with spectrophotometric methods. The antioxidant activities were quantified with the Kit Radicaux Libres (KRLTM), the ferric reducing antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The MS extract showed the highest total phenolic content, and the highest antioxidant capacity, while the MR extract showed the lowest total phenolic content and the lowest antioxidant capacity. The cytoprotective and anti-inflammatory activities of the extracts were quantified on murine RAW 264.7 macrophages treated with 7-ketocholesterol (7KC; 20 µg/mL: 50 µM) associated or not for 24 h and 48 h with ethanolic mint extracts used at different concentrations (25, 50, 100, 200 and 400 µg/mL). Under treatment with 7KC, an important inhibition of cell growth was revealed with the crystal violet test. This side effect was strongly attenuated in a dose dependent manner with the different ethanolic mint extracts, mainly at 48 h. The most important cytoprotective effect was observed with the MS extract. In addition, the effects of ethanolic mint extracts on cytokine secretion (Interleukin (IL)-6, IL-10, Monocyte Chemoattractant Protein (MCP)-1, Interferon (IFN)-ϒ, Tumor necrosis factor (TNF)-α) were determined at 24 h on lipopolysaccharide (LPS, 0.2 µg/mL)-, 7KC (20 µg/mL)- and (7KC + LPS)-treated RAW 264.7 cells. Complex effects of mint extracts were observed on cytokine secretion. However, comparatively to LPS-treated cells, all the extracts strongly reduce IL-6 secretion and two of them (MP and MR) also decrease MCP-1 and TNF-α secretion. However, no anti-inflammatory effects were observed on 7KC- and (7KC + LPS)-treated cells. Altogether, these data bring new evidences on the potential benefits (especially antioxidant and cytoprotective properties) of Algerian mint on human health.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Hai Yang Yu ◽  
Kyoung-Sook Kim ◽  
Young-Choon Lee ◽  
Hyung-In Moon ◽  
Jai-Heon Lee

Oleifolioside A, a new triterpenoid compound isolated fromDendropanax morbiferaLeveille (D. morbifera), was shown in this study to have potent inhibitory effects on lipopolysaccharide (LPS-)stimulated nitric oxide (NO) and prostaglandin E2(PGE2) production in RAW 264.7 macrophages. Consistent with these findings, oleifolioside A was further shown to suppress the expression of LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxigenase-2 (COX-2) in a dose-dependent manner at both the protein and mRNA levels and to significantly inhibit the DNA-binding activity and transcriptional activity of NF-κB in response to LPS. These results were found to be associated with the inhibition of the degradation and phosphorylation of IκB-αand subsequent translocation of the NF-κB p65 subunit to the nucleus. Inhibition of NF-κB activation by oleifolioside A was also shown to be mediated through the prevention of p38 MAPK and ERK1/2 phosphorylation. Taken together, our results suggest that oleifolioside A has the potential to be a novel anti-inflammatory agent capable of targeting both the NF-κB and MAPK signaling pathways.


2021 ◽  
Vol 19 (3) ◽  
pp. 355-363
Author(s):  
Jung-Wook Kang ◽  
In-Chul Lee

Purpose: This study aimed to investigate the effects of the Cassia obtusifolia L. seed extract (CSE) on particulate matter (PM)-induced skin.Methods: The effects of CSE on cell viability were evaluated using a skin cell line. To determine the anti-inflammatory effects and matrix metallopeptidase-1 (MMP-1)-inhibitory effects of CSE on PM-induced skin, NO and MMP-1 expressions were measured using an enzyme-linked immunosorbent assay (ELISA) kit. Also, the effects of CSE was investigated the induction of IL-8 and TNF-α treated PM on reconstructed human full thickness skin models.Results: It was observed that CSE decreased NO production in PM-induced RAW 264.7 cells without cytotoxicity. In addition, CSE decreased the expression of MMP-1 in PM-induced cells in a dose-dependent manner. CSE decreased IL-8 and TNF-α production in a PM-reconstructed human skin model.Conclusion: These results indicate that CSE could be used as a cosmetic material to induce anti-inflammation and inhibition of MMP-1 in PM-induced skin.


Sign in / Sign up

Export Citation Format

Share Document