scholarly journals High Loaded Mounts for Vibration Control Using Magnetorheological Fluids: Review of Design Configuration

2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Xuan Phu Do ◽  
Seung-Bok Choi

Design configurations of high loaded magnetorheological (MR in short) mounts are reviewed and discussed. The configurations are analyzed on the basis of three operating modes of MR fluid: flow mode, shear mode, and squeeze mode. These modes are significantly important to develop new type of mounts and improve the efficiency of vibration control. In this paper, advantages and disadvantages of each operation mode are analyzed on the basis of ability of designing high loaded mounts. In order for analysis, the field-dependent damping force equations for typical cross sections of mounts are firstly investigated while maintaining original equations of these cross sections. As a subsequent step, simulation tools for the high loaded mounts are investigated and discussed. These tools which are developed from the analyzed method are expressed as functions of various design parameters such as inside pressure, magnetic field, dimension, stiffness, and damping. These tools are essential for accurate design of MR mount and for careful checking of the operation capability before manufacturing the mounts. This paper can provide very useful information and guidelines to determine an appropriate design configuration of high loaded mounts whose vibration control performances depend on the operational mode of MR fluid.

Author(s):  
Andrea Spaggiari ◽  
Eugenio Dragoni

Magnetorheological (MR) fluids have a lot of applications in the industrial world, but sometimes their properties are not performing enough to meet system requirements. It has been found that in shear mode MR fluids exhibits a pressure dependency called squeeze strengthen effect. Since a lot of MR fluid based devices work in flow mode (i.e. dampers) this paper investigates the behaviour in flow mode under pressure. The system design is articulated in three steps: hydraulic system design, magnetic circuit design and design of experiment. The experimental apparatus is a cylinder in which a translating piston displaces the fluid without the use of standard gear pumps, incompatible with MR fluids. The experimental apparatus measures the MR fluid yield stress as a function of pressure and magnetic field allowing the yield shear stress to be calculated. A statistical analysis of the results shows that the squeeze strengthen effect is present in flow mode as well and the presence of internal pressure is able to enhance the performance of MR fluid by nearly ten times.


2001 ◽  
Vol 15 (06n07) ◽  
pp. 1017-1024 ◽  
Author(s):  
H. G. LEE ◽  
S. B. CHOI ◽  
S. S. HAN ◽  
J. H. KIM ◽  
M. S. SUH

This paper presents field-dependent Bingham and response characteristics of ER fluid under shear and flow modes. Two different types of electroviscometers are designed and manufactured for the shear mode and flow mode, respectively. An ER fluid consisting of soluble chemical starches (particles) and silicon oil is made and its field-dependent yield stress is experimentally distilled at two different temperatures using the electroviscometers. Time responses of the ER fluid to step electric fields are also evaluated under two operating modes. In addition, a cylindrical ER damper, which is operated under the flow mode, is adopted and its measured damping force is compared with predicted one obtained from Bingham model of the shear and flow mode, respectively.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
A. Spaggiari ◽  
E. Dragoni

Magnetorheological (MR) fluids are widely used in the industrial world; however, sometimes their properties fail to meet system requirements. In shear mode, MR fluids have been found to exhibit a pressure dependency called squeeze strengthen effect. Since a lot of MR fluid based devices work in flow mode (i.e., dampers), this paper investigates the behavior in flow mode under pressure. The system design consists of three steps: the hydraulic system, the magnetic circuit, and the design of experiment method. The experimental apparatus is a cylinder in which a piston displaces the fluid without the use of standard gear pumps, which are incompatible with MR fluids. The experimental apparatus measures the yield stress of the MR fluid as a function of the pressure and magnetic field, thus, enabling the yield shear stress to be calculated. A statistical analysis of the results shows that the squeeze strengthen effect is also present in flow mode, and that the internal pressure enhances the performance of MR fluids by nearly five times.


Author(s):  
Shuo Wang ◽  
Mohammad Elahinia ◽  
The Nguyen

With the advent of alternative energy and hybrid vehicles come new vibration problems and challenges that require nontraditional solutions. Semi-active vibration isolation devices are preferred to address the problem due to their effectiveness and affordability. A magnetorheological (MR) fluid mount can provide effective vibration isolation for applications such as hybrid vehicles. The MR fluid can produce different levels of damping when exposed to different levels of magnetic field. The fluid can be working in three modes which are the flow mode, shear mode and squeeze mode. A mixed mode MR fluid mount was designed to operate in a combination of the flow mode and the squeeze mode. Each of the working modes and the combined working mode has been studied. The mount’s performance has been verified in simulation and experiments. Based on the simulation and experimental results, it can be seen that the mount can provide a large range of dynamic stiffness. Given this range of dynamic stiffness, a controller has been designed to achieve certain dynamic stiffness at certain frequencies. The experiments are set up to realize the hardware-in-the-loop tests. Results from the experiments show that the mixed mode MR fluid mount is able to achieve desired dynamic stiffness which is directly related to vibration transmissibility.


2013 ◽  
Vol 284-287 ◽  
pp. 1778-1782
Author(s):  
Kum Gil Sung

This paper presents vibration control responses of a multi-story structure installed with a semi-active magneto-rheological(MR) damper. As a first step, performance characteristics of three different working modes for MR fluid are compared and the mixed mode type of MR damper is chosen as an optimal candidate for the vibration control of the multi-story structure. An appropriate size of the mixed mode MR damper is devised and manufactured on the basis of the field-dependent Bingham model of the MR fluid which is commercially available. The damping force of the mixed mode MR damper is evaluated with respect to the excitation frequency at various magnetic fields. After formulating the governing equation of motion for the small scaled three-story structure associated with the MR damper, the linear quadratic regulator(LQR) controller to effectively suppress unwanted structural vibrations is designed by imposing semi-active actuating conditions. The control algorithm is then empirically implemented under earthquake conditions and the control responses of the horizontal relative displacement and acceleration are evaluated in time and frequency domains through computer simulations.


1994 ◽  
Vol 116 (3) ◽  
pp. 570-576 ◽  
Author(s):  
Z. Lou ◽  
R. D. Ervin ◽  
F. E. Filisko

In approaching the design of an electrorheology-based, semi-active suspension, the electrorheological component (ER damper) can be built as either a flow-mode, shear-mode, or mixed-mode type of damper. The source of damping force in the flow-mode is exclusively from flow-induced pressure drop across a valve, while that in the shear-mode is purely from the shear stress on a sliding surface. The dynamics of the fluid flow are included in the derivation of the zero-field damping forces. The control effectiveness is found to be strongly related to the dynamic constant (which is proportional to the square root of the vibration frequency) and, for shear-and flow-mode dampers, the ratio of the piston area to the cross-section of the ER control gap. To achieve the same performance, a flow-mode ER damper is not as compact and efficient as a shear-mode ER damper. With the same ER damping force, a mixed-mode damper is more compact than a shear-mode damper. However, the mixed-mode damper does not have as a low zero-field damping force as the shear-mode damper. The analysis is based on the assumption that the ER fluid is Bingham plastic.


2005 ◽  
Vol 11 (2) ◽  
pp. 263-276 ◽  
Author(s):  
J. Wang ◽  
G. Meng

A shear mode magnetorheological (MR) fluid damper used for rotor vibration control is designed and manufactured, and the theoretical model of a cantilevered rotor system with the MR fluid damper is established. The response properties of the rotor system are studied theoretically and experimentally. It is found from the study that the Coulomb friction of the damper is increased as the magnetic field strength applied to the MR fluid increases. As a result, the vibration amplitude of the rotor system supported by the MR damper is decreased near the undamped critical speeds, but is increased in a rotating speed range between the first and the second undamped critical speeds. At the same time, the damped critical speed of the rotor system is increased with the increase of the applied magnetic field. Based on these characteristics, a simple on-off control method is used to suppress the rotor vibration across the critical speeds, and the results show that the method is very effective.


2018 ◽  
Vol 877 ◽  
pp. 391-396
Author(s):  
Jitenkumar D. Patel ◽  
Dipal Patel

Mostly, magnetorheological damper research is going on flow mode and shear mode type of damper. Less work is carried out by researcher on squeeze mode type of damper. This will give higher force as compare to flow mode and shear mode type of MRF damper at low excitation. So, this kind of damper can be used as vibration isolation for high impact loading at low amplitude application like engine mount. Aim of this paper is optimized design of Squeeze mode damper for low amplitude application by using design of experiment tool. For design of squeeze mode type of MR damper magnetic field distribution is very important study to improve damping performance. Various parameters like length of coil, diameter of squeeze plate, current passing through coil, number of turns, area of coil and MR fluid gap are considered during optimization and optimization is done by using FEMM software It shows that length of coil, Number of turn and area of coil increases damping performance improves. Other design parameters are check out with mathematical model of MR damper with theoretical calculation like effect of frequency of excitation, diameter of squeeze plate, thick ness of squeeze plate and amplitude of excitation.


2000 ◽  
Vol 11 (12) ◽  
pp. 936-944 ◽  
Author(s):  
Seung-Bok Choi ◽  
Moo-Ho Nam ◽  
Byung-Kyu Lee

This paper presents vibration control of a semi-active seat suspension with a magneto-rheological (MR) fluid damper, which is applicable to commercial vehicles such as large size of trucks. A cylindrical MR seat damper is designed on the basis of the Bingham model of the MR fluid. After manufacturing the seat damper, field-dependent damping force characteristics are experimentally evaluated. A semi-active seat suspension system installed with the seat damper is then constructed and its governing equation of motion is derived. A skyhook controller to reduce vibration level at the driver’s seat is formulated and realized in a closed-loop control fashion. The control responses, such as acceleration transmissibility, are investigated in both frequency and time domains. In addition, a full-vehicle model featuring the proposed semi-active seat suspension is established and its vibration control performances are evaluated via the hardware-in-the-loop simulation (HILS).


Sign in / Sign up

Export Citation Format

Share Document