scholarly journals A Factor Decomposition on China’s Carbon Emission from 1997 to 2012 Based on IPAT-LMDI Model

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Wei Li ◽  
Ya-Bo Shen ◽  
Hui-Xia Zhang

We probe into the key factors that possess significant effects on China’s CO2emissions during 1997–2012 on the basis of IPAT-LMDI model. Carbon dioxide emissions are specifically decomposed into CO2emission intensity, energy structure, energy intensity, industrial structure, economic output, and population scale effects. Results indicate that the paramount driving factors that resulted in the growth of CO2emissions are economic output, population scale, and energy structure. In contrast, energy intensity and industrial structure generally play an outstanding role in reducing emissions. This paper constructs a new weight assessment system by introducing “contribution value-significant factor-effect coefficient” to replace “contribution value-contribution rate” in the previous literature. According to the most significant positive effect and the most negative effect from the conclusion, we point out the effective policies that can not only accelerate the target of “China’s carbon emissions per unit of GDP could be cut down by 40–45% by 2020, from 2005 levels,” but also have crucial significance on the low-carbon economic development strategy of China.

2012 ◽  
Vol 616-618 ◽  
pp. 1484-1489 ◽  
Author(s):  
Xu Shan ◽  
Hua Wang Shao

The coordination development of economy-energy-environment was discussed with traditional environmental loads model, combined with "decoupling" theory. Considering the possibilities of social and economic development, this paper set out three scenarios, and analyzed quantitatively the indexes, which affected carbon dioxide emissions, including population, per capita GDP, industrial structure and energy structure. Based on this, it forecasted carbon dioxide emissions in China in future. By comparing the prediction results, it held that policy scenario was the more realistic scenario, what’s more it can achieve emission reduction targets with the premise of meeting the social and economic development goals. At last, it put forward suggestions to implement successfully policy scenario, from energy structure, industrial structure, low-carbon technology and so on.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Jing-min Wang ◽  
Yu-fang Shi ◽  
Xue Zhao ◽  
Xue-ting Zhang

Beijing-Tianjin-Hebei is a typical developed region in China. The development of economy has brought lots of carbon emissions. To explore an effective way to reduce carbon emissions, we applied the Logarithmic Mean Divisia Index (LMDI) model to find drivers behind carbon emission from 2003 to 2013. Results showed that, in Beijing, Tianjin, and Hebei, economic output was main contributor to carbon emissions. Then we utilized the decoupling model to comprehensively analyze the relationship between economic output and carbon emission. Based on the two-level model, results indicated the following: (1) Industry sector accounted for almost 80% of energy consumption in whole region. The reduced proportion of industrial GDP will directly reduce the carbon emissions. (2) The carbon factor for CO2/energy in whole region was higher than that of Beijing and Tianjin but lower than that of Hebei. The impact of energy structure on carbon emission depends largely on the proportion of coal in industry. (3) The energy intensity in whole region decreased from 0.79 in 2003 to 0.40 in 2013 (unit: tons of standard coal/ten thousand yuan), which was lower than national average. (4) The cumulative effects of industrial structure, energy structure, and energy intensity were negative, positive, and negative, respectively.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1212 ◽  
Author(s):  
Yao Qian ◽  
Lang Sun ◽  
Quanyi Qiu ◽  
Lina Tang ◽  
Xiaoqi Shang ◽  
...  

Decomposing main drivers of CO2 emissions and predicting the trend of it are the key to promoting low-carbon development for coping with climate change based on controlling GHG emissions. Here, we decomposed six drivers of CO2 emissions in Changxing County using the Logarithmic Mean Divisia Index (LMDI) method. We then constructed a model for CO2 emissions prediction based on a revised version of the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model and used it to simulate energy-related CO2 emissions in five scenarios. Results show that: (1) From 2010 to 2017, the economic output effect was a significant, direct, dominant, and long-term driver of increasing CO2 emissions; (2) The STIRPAT model predicted that energy structure will be the decisive factor restricting total CO2 emissions from 2018 to 2035; (3) Low-carbon development in the electric power sector is the best strategy for Changxing to achieve low-carbon development. Under the tested scenarios, Changxing will likely reach peak total CO2 emissions (17.95 million tons) by 2030. Measures focused on optimizing the overall industrial structure, adjusting the internal industry sector, and optimizing the energy structure can help industry-oriented counties achieve targeted carbon reduction and control, while simultaneously achieving rapid economic development.


2015 ◽  
Vol 737 ◽  
pp. 925-934 ◽  
Author(s):  
Jing Yang ◽  
Huan Mei Yao ◽  
Meng Lin Qin

According to IPCC carbon emission calculation instruction, the amount of industrial carbon emission of downtown of Nanning from 2003-2012 is evaluated. With LMDI element decomposition method, the carbon emission of industrial energy consumption in Nanning downtown is decomposed into effect of five aspects such as energy structure, energy intensity, industrial structure, economic scale and population size. It turns out that: the energy structure change can promote the increase of carbon emission. The energy consumption structure should be optimized and the proportion of high-carbon energy consumption should be reduced; The energy intensity is the leading driving factor of carbon emission. The energy efficiency should be further improved to control the increase of carbon emission to some degree; The industrial structure restrains the increase of carbon emission in a great degree. Industrial restructuring should be strengthened and low-carbon industry should be developed; The scale of economy is the main driving factor of the increase of carbon emission. The extensive way of economic growth which depends on the large input of production factors should be changed; The population has a promoting function the increase of carbon emission, while the driving effect is weak, and the growth rate of the population should be strictly controlled.


2019 ◽  
Vol 44 (3) ◽  
pp. 108-111
Author(s):  
Wenwen Wu

To accelerate the development of low-carbon industry in Zhaoqing City, transform the mode of economic growth, and promote industrial transformation and upgrading, the SWOT analysis method was applied. From the four aspects of strengths, weaknesses, opportunities and threats, the feasibility of developing a low-carbon economy in Zhaoqing was systematically analyzed. From the adjustment of industrial structure, the optimization of energy structure, the promotion of low-carbon tourism, the development of circular economy, and the enhancement of carbon sink capacity, the development path of low-carbon economy was explored. Based on the above analysis, a low carbon development plan was prepared. From the implementation of low-carbon development strategy, the choice of low-carbon economy pilot, and the low-carbon economic security system, the implementation steps of Zhaoqing's low-carbon economy were discussed in detail. The results showed that the low-carbon economy concept provided some ideas for Zhaoqing's economic development. Therefore, Zhaoqing is still in its infancy. The city's transportation system is not perfect. To develop a low-carbon economy, governments, enterprises, and individuals need to participate actively.


2013 ◽  
Vol 291-294 ◽  
pp. 1556-1561
Author(s):  
Ping Wang ◽  
Wan Shui Wu ◽  
Bang Zhu Zhu

In recent years, Guangdong has achieved remarkable performance in economic development; meanwhile it is being faced with problems of increasing CO2 emissions. Following the IPCC Guidelines for National Greenhouse Gas Inventories, we estimated the energy-related CO2 emissions in Guangdong during the period of 1980-2010. We employed the logarithmic mean divisia index (LMDI) method to decompose the CO2 emissions into energy intensity, energy structure, per capita GDP and population scale effects. Besides, we deduced the calculation methods for the year by year effects, the accumulated effects and the contribution degrees. Using 1980 as the base year, the empirical results show that the accumulated effects of energy intensity and energy structure in 2010 are negative, while those of per capita GDP and population scale are positive. Per capita GDP is the chief positive influence on the CO2 emissions. Energy intensity is becoming more significant; however, its direction is instability. Population scale has a significant positive effect on the CO2 emissions. Energy structure has a negligible negative impact on the CO2 emissions. Some suggestions on CO2 emissions reduction in Guangdong are given based on the analysis.


2012 ◽  
Vol 599 ◽  
pp. 211-215
Author(s):  
Lun Wang ◽  
Zhao Sun ◽  
Jing Ya Wen ◽  
Zhuang Li ◽  
Wen Jin Zhao ◽  
...  

This paper developed an optimal model of low-carbon urban agglomeration on the base of energy structure under uncertainty. The case study shows that the carbon intensity was decreased by [32.19, 41.20] (%) and energy intensity was reduced by [34.08, 43.19] (%) compared with those in 2010; meanwhile, the carbon intensity and energy intensity in the core area was reduced by [50.88, 54.11] (%) and [51.24, 54.57] (%) respectively, compared with those in 2010. The optimized scheme could not only meet the requirements of 12th Five-Year Planning Outline of Controlling Greenhouse Gas Emission, but also complied with the requirements of regional planning targets. The established model also provided more decision-making space for the sustainable development of low-carbon urban agglomeration.


2017 ◽  
Vol 9 (7) ◽  
pp. 228 ◽  
Author(s):  
Ting Liu ◽  
Wenqing Pan

This paper combines Theil index method with factor decomposition technique to analyze China eight regions’ inequality of CO2 emissions per capita, and discuss energy structure, energy intensity, industrial structure, and per capita output’s impacts on inequality. This research shows that: (1) The trend of China regional carbon inequality is in the opposite direction to the per capita CO2 emission level. Namely, as the per capita CO2 emission levels rise, regional carbon inequality decreases, and vice versa. (2) Per capita output factor reduces regional carbon inequality, whereas energy structure factor and energy intensity factor increase the inequality. (3) More developed areas can reduce the carbon inequality by improving the energy structure, whereas the divergence of energy intensity in less developed areas has increased to expand the carbon inequity. Thus, when designing CO2 emission reduction targets, policy makers should consider regional differences in economic development level and energy efficiency, and refer to the main influencing factors. At the same time, upgrading industrial structure and upgrading energy technologies should be combined to meet the targets of economic growth and CO2 emission reduction.


2021 ◽  
Author(s):  
Yulin Zhang

To fill the shortcomings of traditional research that ignores the driver’s own spatial characteristics and provide a theoretical support to formulate suitable emission reduction policies in different regions across China. In this pursuit, based on the panel data of provincial CO2 emission in 2007, 2012, and 2017, the present study employed the extended environmental impact assessment model (STIRPAT-GWR model) to study the effect of population, energy intensity, energy structure, urbanization and industrial structure on the CO2 emissions in 29 provinces across China. The empirical results show that the effect of drivers on the CO2 emissions exhibited significant variations among the different provinces. The effect of population in the southwest region was significantly lower than that of the central and eastern regions. Provinces with stronger energy intensity effects were concentrated in the central and western regions. The effect of energy structure in the eastern and northern regions was relatively strong, and gradually weakened towards the southeast region. The areas with high urbanization effect were concentrated in the central and the eastern regions. Furthermore, significant changes were observed in the high-effect regions of the industrial structure in 2017. The high-effect area showed a migration from the northwest and northeast regions in 2007 and 2012, respectively, to the southwest and southeast regions in 2017. Urbanization showed the strongest effect on the CO2 emissions, followed by population and energy intensity, and the weakest effect was exhibited by the energy and industrial structure. Thus, the effects of population and energy structure showed a downward trend, in contrary to the effect of urbanization on the CO2 emissions in China.


2020 ◽  
Vol 12 (4) ◽  
pp. 1428 ◽  
Author(s):  
Na Lu ◽  
Shuyi Feng ◽  
Ziming Liu ◽  
Weidong Wang ◽  
Hualiang Lu ◽  
...  

As the largest carbon emitter in the world, China is confronted with great challenges of mitigating carbon emissions, especially from its construction industry. Yet, the understanding of carbon emissions in the construction industry remains limited. As one of the first few attempts, this paper contributes to the literature by identifying the determinants of carbon emissions in the Chinese construction industry from the perspective of spatial spillover effects. A panel dataset of 30 provinces or municipalities from 2005 to 2015 was used for the analysis. We found that there is a significant and positive spatial autocorrelation of carbon emissions. The local Moran’s I showed local agglomeration characteristics of H-H (high-high) and L-L (low-low). The indicators of population density, economic growth, energy structure, and industrial structure had either direct or indirect effects on carbon emissions. In particular, we found that low-carbon technology innovation significantly reduces carbon emissions, both in local and neighboring regions. We also found that the industry agglomeration significantly increases carbon emissions in the local regions. Our results imply that the Chinese government can reduce carbon emissions by encouraging low-carbon technology innovations. Meanwhile, our results also highlight the negative environmental impacts of the current policies to promote industry agglomeration.


Sign in / Sign up

Export Citation Format

Share Document