scholarly journals A Review on Pineapple Leaves Fibre and Its Composites

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
M. Asim ◽  
Khalina Abdan ◽  
M. Jawaid ◽  
M. Nasir ◽  
Zahra Dashtizadeh ◽  
...  

Natural fibre based composites are under intensive study due to their ecofriendly nature and peculiar properties. The advantage of natural fibres is their continuous supply, easy and safe handling, and biodegradable nature. Although natural fibres exhibit admirable physical and mechanical properties, it varies with the plant source, species, geography, and so forth. Pineapple leave fibre (PALF) is one of the abundantly available wastes materials of Malaysia and has not been studied yet as it is required. A detailed study of chemical, physical, and mechanical properties will bring out logical and reasonable utilization of PALF for various applications. From the socioeconomic prospective, PALF can be a new source of raw material to the industries and can be potential replacement of the expensive and nonrenewable synthetic fibre. However, few studies on PALF have been done describing the interfacial adhesion between fibres and reinforcement compatibility of fibre but a detailed study on PALF properties is not available. In this review, author covered the basic information of PALF and compared the chemical, physical, and mechanical properties with other natural fibres. Furthermore, it summarizes the recent work reported on physical, mechanical, and thermal properties of PALF reinforced polymer composites with its potential applications.

2018 ◽  
Vol 38 (5) ◽  
pp. 211-248 ◽  
Author(s):  
Mun Wai Tham ◽  
MR Nurul Fazita ◽  
HPS Abdul Khalil ◽  
Nurul Zuhairah Mahmud Zuhudi ◽  
Mariatti Jaafar ◽  
...  

Rule of mixture models are usually used in the tensile properties prediction of polymer composites reinforced with synthetic fibres. They are less utilized for natural fibre/polymer composites due to natural fibres physical and mechanical properties variability which reduces rule of mixture model's prediction values accuracy compared to the experimental values. This had led to studies conducted by various researchers to improve the existing rule of mixture models to give a better reflection of the true natural fibres properties and enhance the rule of mixture models prediction accuracy. In this paper, rule of mixture model's utilization includes the existing rule of mixture models as well as proposed rule of mixture models which have one or more factors incorporated into existing rule of mixture models for natural fibre/polymer composites tensile properties prediction are reviewed.


Author(s):  
Himanshu Gupta ◽  
Kamal Kanaujiya ◽  
Syed Mazher Abbas Rizvi

To determine the possibility of using sugar- cane bagasse (SCB)and ground nut shell particulate(GNSP) waste as reinforcing ?ller in the thermo plastic polymer matrix, SCB&GNSP-reinforced polypropylene (PP) composites were prepared. The PP and SCB and GNSP composites were prepared by the extrusion of PP and GNSP with 5, 10, 15, and 20 wt % of SCB and GNSP with 3,6,9 and 12% filler in a co rotating twin screw extruder.. The extruded strands were cut into pellets and injection molded to make test specimens. These specimens were tested for physical and mechanical properties such as tensile, flexural, Izod impact strength shore D hardness and water absorption. It was found that the Tensile strength increased from 29.06 to 31.38 MPa, Flexural strength increased from 28.62 to 43.56 MPa, Izod impact strength decreased from 35.11 to 30.93 J/m, and Shore D Hardness increased from 64.88 to 77.89, with increase in filler loading from 5 to 20% in the PP matrix. The decrease in Izod Impact strength and elongation with addition of SCB & GNSP filler to PP matrix follows the general trend of filler effects on polymer matrix. However, the main purpose of this work was to study the effect of SCB & GNSP waste on the mechanical properties of the PP Composites. The SCB and GNSP waste can be used as filler in the PP composites, which will reduce cost and give environmental benefits.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1369
Author(s):  
Sanjeev Kumar ◽  
Lalta Prasad ◽  
Vinay Kumar Patel ◽  
Virendra Kumar ◽  
Anil Kumar ◽  
...  

In recent times, demand for light weight and high strength materials fabricated from natural fibres has increased tremendously. The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. In this review, the physical and mechanical properties of different natural leaf fibre-based composites are addressed. The influences of fibre loading and fibre length on mechanical properties are discussed for different matrices-based composite materials. The surface modifications of natural fibre also play a crucial role in improving physical and mechanical properties regarding composite materials due to improved fibre/matrix adhesion. Additionally, the present review also deals with the effect of silane-treated leaf fibre-reinforced thermoset composite, which play an important role in enhancing the mechanical and physical properties of the composites.


2021 ◽  
Vol 5 (5) ◽  
pp. 130
Author(s):  
Tan Ke Khieng ◽  
Sujan Debnath ◽  
Ernest Ting Chaw Liang ◽  
Mahmood Anwar ◽  
Alokesh Pramanik ◽  
...  

With the lightning speed of technological evolution, the demand for high performance yet sustainable natural fibres reinforced polymer composites (NFPCs) are rising. Especially a mechanically competent NFPCs under various loading conditions are growing day by day. However, the polymers mechanical properties are strain-rate dependent due to their viscoelastic nature. Especially for natural fibre reinforced polymer composites (NFPCs) which the involvement of filler has caused rather complex failure mechanisms under different strain rates. Moreover, some uneven micro-sized natural fibres such as bagasse, coir and wood were found often resulting in micro-cracks and voids formation in composites. This paper provides an overview of recent research on the mechanical properties of NFPCs under various loading conditions-different form (tensile, compression, bending) and different strain rates. The literature on characterisation techniques toward different strain rates, composite failure behaviours and current challenges are summarised which have led to the notion of future study trend. The strength of NFPCs is generally found grow proportionally with the strain rate up to a certain degree depending on the fibre-matrix stress-transfer efficiency. The failure modes such as embrittlement and fibre-matrix debonding were often encountered at higher strain rates. The natural filler properties, amount, sizes and polymer matrix types are found to be few key factors affecting the performances of composites under various strain rates whereby optimally adjust these factors could maximise the fibre-matrix stress-transfer efficiency and led to performance increases under various loading strain rates.


2015 ◽  
Vol 766-767 ◽  
pp. 199-204 ◽  
Author(s):  
Kumar Jayachandran Nirmal ◽  
D. Premkumar

An experimental analysis has been carried out to investigate the mechanical properties of composites reinforced by sisal, coir, and banana fibres into epoxy resin matrix. The natural fibres were extracted by retting and manual processes. The composites fabricated by epoxy resin and reinforcement in the hybrid combination of Sisal-Banana and Sisal-Coir with the volume fraction of fibres varying from 5% to 30%. It has been identified that the mechanical properties increase with the increase of volume fraction of fibres to a certain extent and then decreases. The hybridization of the reinforcement in the composite shows greater mechanical properties when compared to individual type of natural fibres reinforced. For all the composites tested, the tensile strength of the composite increased up to 25% of volume fraction of the fibres and further for the increase in the volume fraction of fibre the mechanical properties were decreased. As same as tensile properties, the flexural and impact strength also increased linearly up to 25% of volume fraction of fibres and further for the increase in the volume fraction of fibre the mechanical properties were slightly decreased. Key Words: Sisal, Banana, Coir, Epoxy, Hybrid composite.


2018 ◽  
Vol 7 (2) ◽  
pp. 110-112
Author(s):  
Sasikumar Gnanasekaran ◽  
Sivasangari Ayyappan

Natural fibres namely sisal, jute, kenaf, hemp, abaca and banana are mainly used in industries for developing Natural fibres composites. They find many applications such as automobiles, furniture, packing and construction due to many merits such as their low cost, good mechanical properties, non-toxic, low weight, less damage to processing equipment, improved surface finish, abundant and renewable resources. The objective of this paper is to review the applications of various kenaf fibre reinforced polymer composites which will provide a base for further research in this area.


2020 ◽  
Vol 1 (3) ◽  
pp. 77-83

Phenol novolac epoxy resin is a polymer matter which its properties can be modified for industrial needs. In this research, nanocomposites of phenol novolac epoxy resin and unsaturated polyester are made nano Bentonite and silica nanoparticles as filler. For this purpose, effect of nanoparticles percent on nanocomposite formation is studied and their physical, mechanical and thermal properties are obtained. The presence of unsaturated polyester in this process forms a cross-link capable of improving the physical and mechanical properties of epoxy resin. Fracture behavior was determined by a SEM device. Moreover, TGA, DSC, impact tests and bending test were applied for data analysis. When process ability is growing, moisture absorption decreases. Fracture toughness was also evaluated in a stoichiometric network. Physical and mechanical properties improve significantly with increasing nanoparticles. The most important reason for using this nanocomposite is its high resistance to corrosion.


Author(s):  
Viola Hospodarova ◽  
Nadezda Stevulova ◽  
Vojtech Vaclavik ◽  
Tomas Dvorsky ◽  
Jaroslav Briancin

Nowadays, construction sector is focusing in developing sustainable, green and eco-friendly building materials. Natural fibre is growingly being used in composite materials. This paper provides utilization of cellulose fibres as reinforcing agent into cement composites/plasters. Provided cellulosic fibres coming from various sources as bleached wood pulp and recycled waste paper fibres. Differences between cellulosic fibres are given by their physical characterization, chemical composition and SEM micrographs. Physical and mechanical properties of fibre-cement composites with fibre contents 0.2; 0.3and 0.5% by weight of filler and binder were investigated. Reference sample without fibres was also produced. The aim of this work is to investigate the effects of cellulose fibres on the final properties (density, water absorbability, coefficient of thermal conductivity and compressive strength) of the fibrecement plasters after 28 days of hardening. Testing of plasters with varying amount of cellulose fibres (0.2, 0.3 and 0.5 wt. %) has shown that the resulting physical and mechanical properties depend on the amount, the nature and structure of the used fibres. Linear dependences of compressive strength and thermal conductivity on density for plasters with cellulosic fibres adding were observed.


2020 ◽  
Vol 841 ◽  
pp. 327-334
Author(s):  
Dhiwakar S. Ram ◽  
P.N. Bharath Kumar ◽  
R. Sandeep Kumar ◽  
B. Vijaya Ramnath

Natural Fibre composites are being widely used as a replacement to non-bio-degradable polymer composites. The unavailability of proper processes to treat the natural fibres and the errors in fabrication result in less accurate mechanical properties. The accuracy that is obtained by machine-based processes is not possible in Hand layup method, which is employed in fabrication of natural fibre composites. Finite Element method packages which are specially intended in modelling composite structures give more accurate result of properties than experimental setup, by avoiding fabrication errors. This paper evaluates Impact energy and then the tensile strength, flexural strength of a sugarcane fibre GFRP reinforced polymer matrix both by conventional Hand Layup method and also by Finite Element method.


Sign in / Sign up

Export Citation Format

Share Document