scholarly journals Sonic Hedgehog Produced by Bone Marrow-Derived Mesenchymal Stromal Cells Supports Cell Survival in Myelodysplastic Syndrome

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jixue Zou ◽  
Yan Hong ◽  
Yin Tong ◽  
Ju Wei ◽  
Youwen Qin ◽  
...  

The role of marrow microenvironment in the pathogenesis of myelodysplastic syndrome (MDS) remains controversial. Therefore, we studied the influence of bone marrow-derived mesenchymal stromal cells (BMSCs) from patients with different risk types of MDS on the survival of the MDS cell lines SKM-1 and MUTZ-1. We first demonstrated that the expression of Sonic hedgehog (Shh), smoothened (Smo), and glioma-associated oncogene homolog 1 (Gli1) was increased in MDS patientsn=23; the increase in expression was positively correlated with the presence of high-risk factors. The Shh signaling inhibitor, cyclopamine, inhibited high-risk MDS BMSC-induced survival of SKM-1 and MUTZ-1 cells, suggesting a role for Shh signaling in MDS cell survival. Furthermore, cyclopamine-mediated inhibition of Shh signaling in SKM-1 and MUTZ-1 cells resulted in decreased DNMT1 expression and cell survival; however, exogenous Shh peptide had the opposite effect, suggesting that Shh signaling could regulate the expression of DNMT1, thereby modulating cell survival in MDS. In addition, the apoptosis of SKM-1 and MUTZ-1 cell increased significantly when cultured with cyclopamine and a demethylation agent, 5-Aza-2′-deoxycytidine. These findings suggest that Shh signaling from BMSCs is important in the pathogenesis of MDS and could play a role in disease progression by modulating methylation.

2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 397-397
Author(s):  
Carlos Santamaría ◽  
Olga López-VIllar ◽  
Sandra Muntión ◽  
Belén Blanco ◽  
Soraya Carrancio ◽  
...  

Abstract Abstract 397 Mesenchymal stromal cells (MSC) are closely related to the regulation of hematopoietic stem cell niche. Recently, Raaijmakers et al (Nature, 2010), published that deletion of Dicer1, a RNase III enzyme involved in microRNA biogenesis, in murine MSC-derived osteoprogenitors triggered peripherical blood cytopenias, myelodysplasia and subsequent AML, showing that molecular alterations in bone marrow microenvironment could result in clonal impaired haematopoiesis. Here, we have investigated whether MSC from myelodysplastic syndrome (MDS) patients show differences in DICER1 and DROSHA, another RNA III endonuclease, in comparison to healthy MSC. In addition, we have analyzed several hematopoietic-related microRNAs in these same samples. Bone marrow MSC from MDS patients (n=35; 10 5q- syndrome, 4 RA, 5 RARS, 10 RCMD, 3 RAEB, 2 MDS-U and 1 hypocellular MDS) and healthy donors (HD, n=20) were isolated and in vitro expanded following standard procedures until the third passage. Additionally, paired mononuclear cells (MNC) from 13 MDS and 8 HD were obtained. Total RNA was isolated using TRIzol reagent (Invitrogen). DICER1 and DROSHA relative gene expressions were assessed by quantitative PCR (Q-PCR) using commercial TaqMan® assay (Applied Biosystems®) with GAPDH as control gene. DICER1 and DROSHA (Abcam) protein expression were evaluated in whole cell lysates by western blot, using calnexin (Stressgen) as control. Several microRNAs with known role in hematopoiesis and immune system regulation were analyzed in 25 MDS and 12 HD by Q-PCR using commercial TaqMan® MicroRNA assay (Applied Biosystems®) with RNU43 as control microRNA. MSC from MDS showed significant lower DICER1 (0.0035±0.0020 vs. 0.0076±0.0092; p=0.044) and DROSHA (0.0070±0.0028 vs. 0.0135±0.0176; p=0.019) gene expression levels than healthy controls. Moreover, MSC from MDS showed lower protein expression of both DICER1 and DROSHA by western blot analysis, confirming Q-PCR findings. By contrast, no difference in either DICER1 (0.0197±0.0151 vs. 0.0173±0.0112; p=0.9) or DROSHA (0.0089±0.0023 vs. 0.0067±0.0037; p=0.09) gene expression were observed between MNC from MDS and HD. As far as microRNA expression, we observed a lower expression of mir-155 (0.63±0.92 vs. 0.94±0.49; p=0.007) and mir-181a (1.30±0.95 vs. 2.02±1.05; p=0.041) in MSC from MDS in comparison to healthy controls. Mir-155 and mir-181a are involved in T-cell and B-cell differentiation, while mir-155 are also related to erythroid and megakarycytic differentiation. We conclude that MSC from MDS patients show lower expression of DICER and DROSHA, two relevant RNA-III endonucleases involved in the microRNA biogenesis, confirming recent findings in murine models. Moreover, the expression of some microRNA is impaired in these cells, raising the possibility that these microenvironmental alterations could be involved in the MDS pathophysiology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1220-1220
Author(s):  
Claudia Cappuzzello ◽  
Andrea Doni ◽  
Erica Dander ◽  
Fabio Pasqualini ◽  
Manuela Nebuloni ◽  
...  

Abstract Although several studies have shown the capacity of mesenchymal stromal cells (MSCs) to repair and regenerate different tissues, the mechanisms underlying these processes are not understood. Long Pentraxin 3 (PTX3) is a multifunctional protein produced by MSCs and other cell subsets upon activation with inflammatory cytokines. PTX3 is involved in innate immunity, inflammation and extracellular matrix deposition. In the present study we analyzed the potential role of PTX3 in wound repair process induced by MSCs. PTX3 knockout MSCs (PTX3-/-MSCs) were collected from bone marrow of PTX3-/- mice. After 3-5 culture passages the expression of surface markers was analyzed by flow cytometry and their osteogenic and adipogenic differentiation capacity was detected by alizarin red O and oil red S staining, respectively. The ability of PTX3-/-MSCs to abrogate T cell proliferation was evaluated by co-culturing MSCs and PBMCs previously activated with Phytohaemagglutinin. Finally, equal number of both PTX3-/-MSCs and wild type (WT) MSCs were implanted into excisional wounds created by a biopsy punch on the back of allogenic WT and PTX3-/- mice. Wound area was measured up to 14 day and calculated using an image analysis program. The wound specimens were collected at 2, 7 and 14 days and processed for histological analysis. We demonstrated that PTX3-/-MSCs, similarly to WT MSCs, displayed typical fibroblastoid morphology, they expressed common MSC markers and were able to differentiate into adipocytes and osteoblasts. In addition, they drastically decreased the mitogen-induced proliferation of lymphocyte. Importantly, in a mouse model of wound healing, PTX3-/- MSCs showed a highly significant defect in wound closure compared to WT MSCs at each time point. Histological evaluation of skin samples treated with PTX3-/- MSCs showed a reduction of the granulation tissue and a significant increase of neutrophils (GR-1+) in the wound bed. Moreover, wounds treated with PTX3-/- MSCs were characterized by an excessive accumulation of fibrin at the 2nd day after injury. Accordingly, PTX3-/- MSCs showed a defective ability to degrade the fibrin matrix in vitro. Finally, PTX3-/- MSCs failed to close the ulcers in PTX3-/- mice. In conclusion, we demonstrated that PTX3 deficiency does not alter the phenotype and the capacity of MSCs to differentiate into mesengetic lineages; however, the production of PTX3 represents an essential requirement for MSC ability of enhancing tissue repair. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pascal David Johann ◽  
Ingo Müller

The clinical use of bone marrow derived multipotent mesenchymal stromal cells (BM-MSCs) in different settings ranging from tissue engineering to immunotherapies has prompted investigations on the properties of these cells in a variety of other tissues. Particularly the role of MSCs in solid tumors has been the subject of many experimental approaches. While a clear phenotypical distinction of tumor associated fibroblasts (TAFs) and MSCs within the tumor microenvironment is still missing, the homing of bone marrow MSCs in tumor sites has been extensively studied. Both, tumor-promoting and tumor-inhibiting effects of BM-MSCs have been described in this context. This ambiguity requires a reappraisal of the different studies and experimental methods employed. Here, we review the current literature on tumor-promoting and tumor-inhibiting effects of BM-MSCs with a particular emphasis on their interplay with components of the immune system and also highlight a potential role of MSCs as cell of origin for certain mesenchymal tumors.


2020 ◽  
Vol 53 (5) ◽  
Author(s):  
Hayoung Choi ◽  
Yonggoo Kim ◽  
Dain Kang ◽  
Ahlm Kwon ◽  
Jiyeon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document