scholarly journals A Recipe Composed of Chinese Herbal Active Components Regulates Hepatic Lipid Metabolism of NAFLDIn VivoandIn Vitro

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Sheng-xi Meng ◽  
Qian Liu ◽  
Ya-jun Tang ◽  
Wen-jing Wang ◽  
Qing-shan Zheng ◽  
...  

This study is to investigate the therapeutic effects of the recipe composed ofAtractylodes macrocephalapolysaccharide, chlorogenic acid, and geniposide (named ACG) on experimental nonalcoholic fatty liver (NAFL). The research was divided into two parts as screening experiment and verification experiment. In the screening experiment, we used high-fat diet (HFD) induced NAFL rat model and uniform design to get the recipe from five Chinese herbal active components. In the verification experiment, HFD induced fatty liver rat and mouse NAFL models and free fatty acid (FFA) induced HepG2 cell model were used to verify the effects of ACG. According to the multiple regression equation of the hepatic triglyceride (TG) contents of each group in the screening experiment, the recipe ACG was obtained and the doses ofAtractylodes macrocephalapolysaccharide, chlorogenic acid, and geniposide for rats were 266.67, 3.33, and 45 mg/kg, respectively. The results of verification experiment verified that ACG could significantly reduce hepatic TG contents of NAFL rats and mice, as well as the cellular TG content of FFA-induced HepG2 cells. ACG could also improve HOMA-IR and hepatic mitochondrial ultrastructure of NAFL mice. Our study verified that ACG recipe could regulate lipid metabolism of NAFLin vivoandin vitro.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Lijing Ke ◽  
Pingfan Rao

Abstract Herbal soups have always been a popular option for treating oxidative stress-related chronic diseases including diabetes. Various components of these soups have been studied in the hope to identify the active principles, mainly focusing on the individual phytochemicals. As we have revealed previously, the micro/nanoparticles (MNPs) formed incidentally during the boiling water extraction of herbal soups may be bioactive and functional. This study aims to elucidate the underlying mechanism of the biological functions of these MNPs. A Chinese herbal medicine soup prepared by Radix Puerariae lobatae, ginger and other three herbs, namely Ge-Gen-Qin-Lian-Tang, was employed here, as it was proven to be effective in treating type 2 diabetes clinically. The soup was separated with high-speed centrifuge (15600×g) to obtain the supernatant (solutes and nanoparticles) and sediments (MNPs), and determined for the content of three bioactive phytochemicals, e.g. puerarin, berberine and baicalin. Their hypoglycemic, hypolipidemic and antioxidant effects were determined on streptozotocin (STZ)-induced Type 2 diabetic Wistar male rats fed on high fat-high sugar diet. The animals were divided into six groups (normal control, diabetic model, whole soup, supernatant, MNPs and metformin, 8 rats each), recording weight, diet, excretion, mental status, etc. The fasting blood glucose and oral glucose tolerance test were conducted regularly. Eight weeks after the administration, the rats were sacrificed after anesthesia. Abdominal aorta blood and tissue samples of pancreas, heart, skeletal muscle, liver, kidney, spleen were collected. The glycated hemoglobin, glucose, lipid, insulin, glucagon, AMPK, SOD, puerarin, berberine, baicalin in blood plasma, insulin in pancreas, SOD in tissues, AMPK in skeletal muscle were measured. Liver tissue sections were observed with HE staining. Statistical analysis (t-test) were performed. The MNPs reduced blood glucose, ameliorated glucose tolerance, elevated insulin secretion and significantly improve glucose and lipid metabolism (P <0.05), showing stronger effects than the supernatant components. Notably, MNPs elevated the AMPK level in skeletal muscle, even more potently than the whole soup. The therapeutic effects of MNPs on the liver damage were even stronger than metformin. Meanwhile, MNPs promoted absorption of puerarin, berberine and baicalin and increase their concentration in blood (P <0.05). Therefore, the MNPs from the herbal soup exhibited more potent effects than the soluble components on ameliorating glucose and lipid metabolism and pancreatic functions of diabetic rats. The actions of these MNPs provide a new perspective for understanding the antidiabetic effects of herbal soups and serve as a vehicle for the multiple phytochemicals to synergistically possess therapeutic effects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng Chen ◽  
Xin Xin ◽  
Qian Liu ◽  
Hua-Jie Tian ◽  
Jing-Hua Peng ◽  
...  

Background: Non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of hepatic triglycerides (TGs), has become a worldwide chronic liver disease. But efficient therapy keeps unsettled. Our previous works show that geniposide and chlorogenic acid combination (namely the GC combination), two active chemical components combined with a unique ratio (67.16:1), presents beneficial effects on high-fat diet-induced NAFLD rodent models. Notably, microarray highlighted the more than 5-fold down-regulated SCD-1 gene in the GC combination group. SCD-1 is an essential lipogenic protein for monounsaturated fatty acids’ biosynthesis and serves as a key regulatory enzyme in the last stage of hepatic de novo lipogenesis (DNL).Methods: NAFLD mice model was fed with 16 weeks high-fat diet (HFD). The pharmacological effects, primarily on hepatic TG, TC, FFA, and liver enzymes, et al. of the GC combination and two individual components were evaluated. Furthermore, hepatic SCD-1 expression was quantified with qRT-PCR, immunoblotting, and immunohistochemistry. Finally, the lentivirus-mediated over-expressed cell was carried out to confirm the GC combination’s influence on SCD-1.Results: The GC combination could significantly reduce hepatic TG, TC, and FFA in NAFLD rodents. Notably, the GC combination presented synergetic therapeutic effects, compared with two components, on normalizing murine hepatic lipid deposition and disordered liver enzymes (ALT and AST). Meanwhile, the robust SCD-1 induction induced by HFD and FFA in rodents and ALM-12 cells was profoundly blunted, and this potent suppression was recapitulated in lentivirus-mediated SCD-1 over-expressed cells.Conclusion: Taken together, our data prove that the GC combination shows a substantial and synergetic anti-lipogenesis effect in treating NAFLD, and these amelioration effects are highly associated with the potent suppressed hepatic SCD-1 and a blunted DNL process.


2021 ◽  
Vol 49 (08) ◽  
pp. 1871-1895
Author(s):  
Zhenzhen Mu ◽  
Jinrong Guo ◽  
Dongxia Zhang ◽  
Yuanyuan Xu ◽  
Mingming Zhou ◽  
...  

Shikonin is one of the primary active components extracted from the dried root ofZicao (Lithospermum erythrorhizon, Onosma paniculata, or Arnebia euchroma), a traditional Chinese herbal medicine. Shikonin is known to not only exert anti-proliferative, anti-inflammatory, and anti-angiogenic activities, but also play a crucial role in triggering the production of reactive oxygen species, suppressing the release of exosomes, and inducing apoptosis. Increasing evidence suggests that shikonin has a protective effect against skin diseases, including psoriasis, melanoma, and hypertrophic scars. In order to evaluate the application potential of shikonin in the treatment of skin diseases, this review is the first of its kind to provide comprehensive and up-to-date information regarding the uses of shikonin and its derivatives on skin diseases and its underlying mechanisms. In this review, we have focused on the signaling pathways and cellular targets involved in the anti-dermatosis effects of shikonin to bridge the gaps in the literature, thereby providing scientific support for the research and development of new drugs from a traditional medicinal plant.


1989 ◽  
Vol 51 (5) ◽  
pp. 1003-1013 ◽  
Author(s):  
Hiromi KOBAYASHI ◽  
Masamitsu ISHII ◽  
Tsukasa TANII ◽  
Takeshi KOHNO ◽  
Toshio HAMADA

2013 ◽  
Vol 32 (10) ◽  
pp. 1051-1054
Author(s):  
Rong CHEN ◽  
Yi CAO ◽  
Lu-ting ZHOU ◽  
Xian-hua MA ◽  
Yan WANG ◽  
...  
Keyword(s):  

2019 ◽  
Vol 22 (3) ◽  
pp. 194-200 ◽  
Author(s):  
Xiang Liu ◽  
Zhi-Hong Xie ◽  
Chen-Yuan Liu ◽  
Ying Zhang

Background: Chinese herbal monomer hairy Calycosin is a flavonoid extracted from Radix astragali. Aims and Scope: The aim of the research was to investigate the effect and mechanism of Hairy Calycosin on Non-Alcoholic Fatty Liver Dieases (NAFLD) in rats. Materials and Methods: 60 rats were randomly divided into 6 groups, then NAFLD rat models were prepared and treated with different doses of Hairy Calycosin (0.5, 1.0, 2.0 mg/kg) or Kathyle relatively. Results: Both 1.0 mg/kg and 2.0 mg/kg Hairy Calycosin treatment could significantly increase the serum Superoxide Dismutase (SOD) content of the model rats and reduce the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), Free Fatty Acid (FFA), IL-6, tumor necrosis factor-alpha (TNF-α) and liver homogenate malondialdehyde (MDA), while 2.0 mg/kg Hairy Calycosin can down-regulate liver tissue cytochrome p450 2E1 (CYP2E1). In the electron microscope, compared with the model control group, the mitochondrial swelling in the hepatocytes of Hairy Calycosin (1.0, 2.0 mg/kg) treatment group was significantly reduced, the ridge on the inner membrane of mitochondria increased, and the lipid droplets became much smaller. Conclusion: Hairy Calycosin can effectively control the lipid peroxidation in liver tissues of rats with NAFLD, and reduce the levels of serum TNF-α, IL-6, MDA and FFA, effectively improve the steatosis and inflammation of liver tissue, and down-regulate the expression of CYP2E1, inhibit apoptosis of hepatocytes.


2021 ◽  
Vol 15 (1) ◽  
pp. 21-35
Author(s):  
Yana Geng ◽  
Klaas Nico Faber ◽  
Vincent E. de Meijer ◽  
Hans Blokzijl ◽  
Han Moshage

Abstract Background Non-alcoholic fatty liver disease (NAFLD), characterized as excess lipid accumulation in the liver which is not due to alcohol use, has emerged as one of the major health problems around the world. The dysregulated lipid metabolism creates a lipotoxic environment which promotes the development of NAFLD, especially the progression from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH). Purposeand Aim This review focuses on the mechanisms of lipid accumulation in the liver, with an emphasis on the metabolic fate of free fatty acids (FFAs) in NAFLD and presents an update on the relevant cellular processes/mechanisms that are involved in lipotoxicity. The changes in the levels of various lipid species that result from the imbalance between lipolysis/lipid uptake/lipogenesis and lipid oxidation/secretion can cause organellar dysfunction, e.g. ER stress, mitochondrial dysfunction, lysosomal dysfunction, JNK activation, secretion of extracellular vesicles (EVs) and aggravate (or be exacerbated by) hypoxia which ultimately lead to cell death. The aim of this review is to provide an overview of how abnormal lipid metabolism leads to lipotoxicity and the cellular mechanisms of lipotoxicity in the context of NAFLD.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 791
Author(s):  
Su Jin Lee ◽  
Ji Eun Kim ◽  
Yun Ju Choi ◽  
Jeong Eun Gong ◽  
So Hae Park ◽  
...  

To investigate the therapeutic effects of methanol extracts of Dipterocarpus tuberculatus Roxb. (MED) against UV-induced photoaging, we assessed for alterations in the antioxidant activity, anti-apoptotic effects, ECM modulation, skin appearances, and anti-inflammatory response in normal human dermal fibroblast (NHDF) cells and nude mice orally treated with MED. High levels of tannin content and high free radical scavenging activity to DPPH were determined in MED, while seven active components, namely, gallic acid, bergenin, ellagic acid, ε-viniferin, asiatic acid, oleanolic acid, and 2α-hydroxyursolic acid, were identified using LC–MS analyses. UV-induced alterations in the NO concentration, SOD activity, and Nrf2 expression were remarkably recovered in MED-treated NHDF cells. Moreover, the decreased number of apoptotic cells and G2/M phase arrest were observed in the UV + MED-treated groups. Similar recoveries were detected for β-galactosidase, MMP-2/9 expression, and intracellular elastase activity. Furthermore, MED treatment induced suppression of the COX-2-induced iNOS mediated pathway, expression of inflammatory cytokines, and inflammasome activation in UV-radiated NHDF cells. The anti-photoaging effects observed in NHDF cells were subsequently evaluated and validated in UV + MED-treated nude mice through skin phenotypes and histopathological structure analyses. Taken together, these results indicate that MED exerts therapeutic effects against UV-induced photoaging and has the potential for future development as a treatment for photoaging.


2021 ◽  
Vol 22 (3) ◽  
pp. 1458
Author(s):  
Kai Qiu ◽  
Qin Zhao ◽  
Jing Wang ◽  
Guang-Hai Qi ◽  
Shu-Geng Wu ◽  
...  

Metabolic dysfunction-associated fatty liver disease (MAFLD) and its interaction with many metabolic pathways raises global public health concerns. This study aimed to determine the therapeutic effects of Pyrroloquinoline quinone (PQQ, provided by PQQ.Na2) on MAFLD in a chick model and primary chicken hepatocytes with a focus on lipid metabolism, anti-oxidative capacity, and mitochondrial biogenesis. The MAFLD chick model was established on laying hens by feeding them a high-energy low-protein (HELP) diet. Primary hepatocytes isolated from the liver of laying hens were induced for steatosis by free fatty acids (FFA) and for oxidative stress by hydrogen peroxide (H2O2). In the MAFLD chick model, the dietary supplementation of PQQ conspicuously ameliorated the negative effects of the HELP diet on liver biological functions, suppressed the progression of MAFLD mainly through enhanced lipid metabolism and protection of liver from oxidative injury. In the steatosis and oxidative stress cell models, PQQ functions in the improvement of the lipid metabolism and hepatocytes tolerance to fatty degradation and oxidative damage by enhancing mitochondrial biogenesis and then increasing the anti-oxidative activity and anti-apoptosis capacity. At both the cellular and individual levels, PQQ was demonstrated to exert protective effects of hepatocyte and liver from fat accumulation through the improvement of mitochondrial biogenesis and maintenance of redox homeostasis. The key findings of the present study provide an in-depth knowledge on the ameliorative effects of PQQ on the progression of fatty liver and its mechanism of action, thus providing a theoretical basis for the application of PQQ, as an effective nutrient, into the prevention of MAFLD.


Sign in / Sign up

Export Citation Format

Share Document